题目:​​http://acm.hdu.edu.cn/showproblem.php?pid=3400​


​Line belt​


Time Limit: 1000MS

 

Memory Limit: 32768KB

 

64bit IO Format: %I64d & %I64u


​Submit​​​ ​​Status​


Description



In a two-dimensional plane there are two line belts, there are two segments AB and CD, lxhgww's speed on AB is P and on CD is Q, he can move with the speed R on other area on the plane. 
How long must he take to travel from A to D?



 


Input



The first line is the case number T. 
For each case, there are three lines. 
The first line, four integers, the coordinates of A and B: Ax Ay Bx By. 
The second line , four integers, the coordinates of C and D:Cx Cy Dx Dy. 
The third line, three integers, P Q R. 
0<= Ax,Ay,Bx,By,Cx,Cy,Dx,Dy<=1000 
1<=P,Q,R<=10



 


Output



The minimum time to travel from A to D, round to two decimals.



 


Sample Input



1 0 0 0 100 100 0 100 100 2 2 1



 


Sample Output



136.60

分析:最初自己想到的是向量,三个主要的向量:AB上的a向量,CD上的c向量,其他区域的b向量。三者满足这样的关系:(1)|a+b+c|=|AD|  (2)|a|/p+|b|/r+|c|/q=min_time.  (3) 0<=|a|<=|AB|   (4)0<=|c|<=|CD|   (5) |b|=|AD|-|a+c|  因为是极值问题自然想到三分,可是向量怎么用长度表示?不能,只有用二维坐标,把所有的位置信息存在点里,计算距离,第三个点的位置推导全部用坐标来解决。


hdu 3400 Line belt(多重三分)_三分


pt,qt都是两条线段上运动的点,pt,qt的坐标可以通过线段长度之比推导出来。最后的结果确定:每定一个pt点就对qt三分,找A--pt,pt--qt,qt--D的长度之和,pt用一次三分,qt在pt的基础上再用三分,即pt在AB上动一下,qt在CD上转悠一圈。


#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
const double eps=1e-7,Min=1e-9;
struct node{
double x,y;
}a,b,c,d,pt,qt;
double lab,lcd,p,q,r;
double dist(node q1,node q2){
return sqrt(eps+(q1.x-q2.x)*(q1.x-q2.x)+(q1.y-q2.y)*(q1.y-q2.y)); //eps不能缺
}
void calpt(double ra){
pt.x=a.x+ra/lab*(b.x-a.x);
pt.y=a.y+ra/lab*(b.y-a.y);
}
void calqt(double ra){
qt.x=d.x+ra/lcd*(c.x-d.x);
qt.y=d.y+ra/lcd*(c.y-d.y);
}
double cal(double ra){
calpt(ra);
double low=0,high=lcd,mid1,mid2,ans=dist(pt,a)/p,ans2,ans3;
while(high-low>Min){
mid1=low+(high-low)/3;
mid2=high-(high-low)/3;
calqt(mid1);
ans2=dist(qt,pt)/r+dist(qt,d)/q;
calqt(mid2);
ans3=dist(qt,pt)/r+dist(qt,d)/q;
if(ans2<ans3) high=mid2;
else low=mid1;
}
return ans+ans2;
}
int main()
{
//freopen("cin.txt","r",stdin);
int t;
cin>>t;
while(t--){
double ax,ay,bx,by,cx,cy,dx,dy;
scanf("%lf%lf%lf%lf",&ax,&ay,&bx,&by);
a.x=ax; a.y=ay; b.x=bx; b.y=by;
scanf("%lf%lf%lf%lf",&cx,&cy,&dx,&dy);
c.x=cx; c.y=cy; d.x=dx; d.y=dy;
scanf("%lf%lf%lf",&p,&q,&r);
lab=dist(a,b),lcd=dist(c,d);
double low=0,high=lab,mid1,mid2;
while(high-low>Min){
mid1=low+(high-low)/3;
mid2=high-(high-low)/3;
if(cal(mid1)<cal(mid2)) high=mid2; //边界不要混淆
else low=mid1;
}
printf("%.2lf\n",cal(mid1));
}
return 0;
}