时序预测 | Matlab实现EEMD-SSA-BiLSTM、EEMD-BiLSTM、SSA-BiLSTM、BiLSTM时间序列预测对比
目录
- 时序预测 | Matlab实现EEMD-SSA-BiLSTM、EEMD-BiLSTM、SSA-BiLSTM、BiLSTM时间序列预测对比
- 预测效果
- 基本介绍
- 程序设计
- 参考资料
预测效果
基本介绍
1.Matlab实现EEMD-SSA-BiLSTM、EEMD-BiLSTM、SSA-BiLSTM、BiLSTM时间序列预测对比,集合经验模态分解结合麻雀算法优化双向长短期记忆神经网络、集合经验模态分解结合双向长短期记忆神经网络、麻雀算法优化双向长短期记忆神经网络、双向长短期记忆神经网络时间序列预测对比。
2.EEMD-SSA-BiLSTM是一种基于集合经验模态分解(EEMD)、麻雀算法(SSA)和双向长短期记忆神经网络(BiLSTM)的时间序列预测方法;
首先,使用EEMD方法对原始时间序列进行分解,得到多个固有模态函数(IMF)。然后,使用SSA算法对每个IMF进行优化,得到最优的模型参数。最后,将所有IMF的预测结果相加得到最终的预测结果。.EEMD-SSA-BiLSTM方法的优点是能够充分挖掘时间序列的非线性和非平稳特征,并且能够自适应地对每个IMF进行优化,提高了预测的准确性和鲁棒性,可以应用于各种时间序列预测问题,例如股票价格预测、气象数据预测、交通流量预测等。
3.运行环境Matlab2018b及以上,运行每个子文件夹的main即可,excel数据,方便替换;
程序设计
- 完整程序和数据下载方式:私信博主回复Matlab实现EEMD-SSA-BiLSTM、EEMD-BiLSTM、SSA-BiLSTM、BiLSTM时序预测对比。
%% 采用ssa优化
[x ,fit_gen,process]=ssaforlstm(XTrain,YTrain,XTest,YTest);%分别对隐含层节点 训练次数与学习率寻优
%% 参数设置
pop=5; % 种群数
M=20; % 最大迭代次数
%初始化种群
for i = 1 : pop
for j=1:dim
if j==1%除了学习率 其他的都是整数
x( i, j ) = (ub(j)-lb(j))*rand+lb(j);
else
x( i, j ) = round((ub(j)-lb(j))*rand+lb(j));
end
end
fit( i )=fitness(x(i,:),P_train,T_train,P_test,T_test);
end
pFit = fit;
pX = x;
fMin=fit(1);
bestX = x( i, : );
for t = 1 : M
[ ~, sortIndex ] = sort( pFit );% Sort.从小到大
[fmax,B]=max( pFit );
worse= x(B,:);
r2=rand(1);
%%%%%%%%%%%%%5%%%%%%这一部位为发现者(探索者)的位置更新%%%%%%%%%%%%%%%%%%%%%%%%%
if(r2<0.8)%预警值较小,说明没有捕食者出现
for i = 1 : pNum %r2小于0.8的发现者的改变(1-20) % Equation (3)
r1=rand(1);
x( sortIndex( i ), : ) = pX( sortIndex( i ), : )*exp(-(i)/(r1*M));%对自变量做一个随机变换
x( sortIndex( i ), : ) = Bounds( x( sortIndex( i ), : ), lb, ub );%对超过边界的变量进行去除
fit( sortIndex( i ) )=fitness(x(sortIndex( i ),:),P_train,T_train,P_test,T_test);
end
else %预警值较大,说明有捕食者出现威胁到了种群的安全,需要去其它地方觅食
for i = 1 : pNum %r2大于0.8的发现者的改变
x( sortIndex( i ), : ) = pX( sortIndex( i ), : )+randn(1)*ones(1,dim);
x( sortIndex( i ), : ) = Bounds( x( sortIndex( i ), : ), lb, ub );
fit( sortIndex( i ) )=fitness(x(sortIndex( i ),:),P_train,T_train,P_test,T_test);
end
end
[ ~, bestII ] = min( fit );
bestXX = x( bestII, : );
%%%%%%%%%%%%%5%%%%%%这一部位为加入者(追随者)的位置更新%%%%%%%%%%%%%%%%%%%%%%%%%
for i = ( pNum + 1 ) : pop %剩下20-100的个体的变换 % Equation (4)
% i
% sortIndex( i )
A=floor(rand(1,dim)*2)*2-1;
if( i>(pop/2))%这个代表这部分麻雀处于十分饥饿的状态(因为它们的能量很低,也是是适应度值很差),需要到其它地方觅食
x( sortIndex(i ), : )=randn(1,dim).*exp((worse-pX( sortIndex( i ), : ))/(i)^2);
else%这一部分追随者是围绕最好的发现者周围进行觅食,其间也有可能发生食物的争夺,使其自己变成生产者
x( sortIndex( i ), : )=bestXX+(abs(( pX( sortIndex( i ), : )-bestXX)))*(A'*(A*A')^(-1))*ones(1,dim);
end
x( sortIndex( i ), : ) = Bounds( x( sortIndex( i ), : ), lb, ub );%判断边界是否超出
fit( sortIndex( i ) )=fitness(x(sortIndex( i ),:),P_train,T_train,P_test,T_test);
end
%%%%%%%%%%%%%5%%%%%%这一部位为意识到危险(注意这里只是意识到了危险,不代表出现了真正的捕食者)的麻雀的位置更新%%%%%%%%%%%%%%%%%%%%%%%%%
c=randperm(numel(sortIndex));%%%%%%%%%这个的作用是在种群中随机产生其位置(也就是这部分的麻雀位置一开始是随机的,意识到危险了要进行位置移动,
%处于种群外围的麻雀向安全区域靠拢,处在种群中心的麻雀则随机行走以靠近别的麻雀)
b=sortIndex(c(1:pop));
for j = 1 : length(b) % Equation (5)
if( pFit( sortIndex( b(j) ) )>(fMin) ) %处于种群外围的麻雀的位置改变
x( sortIndex( b(j) ), : )=bestX+(randn(1,dim)).*(abs(( pX( sortIndex( b(j) ), : ) -bestX)));
else
%处于种群中心的麻雀的位置改变
x( sortIndex( b(j) ), : ) =pX( sortIndex( b(j) ), : )+(2*rand(1)-1)*(abs(pX( sortIndex( b(j) ), : )-worse))/ ( pFit( sortIndex( b(j) ) )-fmax+1e-50);
end
x( sortIndex(b(j) ), : ) = Bounds( x( sortIndex(b(j) ), : ), lb, ub );
fit( sortIndex( b(j) ) )=fitness(x(sortIndex( b(j) ),:),P_train,T_train,P_test,T_test);
end