Default



Fibonacci



Description




 Fibonacci integer sequence指 F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. eg:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

Fibonacci 的矩阵乘法求法如下

POJ 3070(Fibonacci-矩阵幂)_#include

.

Given an integer n, 求 Fn mod 10000.



Input



多组数据,每行一个 n (where 0 ≤ n ≤ 1,000,000,000). 数据以 −1 结尾.



Output



对每组数据打印一行 Fn mod 10000).



Sample Input


099999999991000000000-1


Sample Output


0346266875


Hint



As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

POJ 3070(Fibonacci-矩阵幂)_矩阵乘法_02

.

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

POJ 3070(Fibonacci-矩阵幂)_数据_03

.



Source


​Stanford Local 2006​

Time Limit: 1000MS

 

Memory Limit: 65536K

Total Submissions: 6733

 

Accepted: 4765

正宗矩阵幂练手题。

做了这题就差不多理解矩阵乘法了。

补充:递归一般能用矩阵乘法,如f[i]=g(f[i-1],f[i-2])...



#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<functional>
using namespace std;
#define MAXN (1000000000)
#define F (10000)
struct M
{
int a[3][3];
M(int i){a[1][1]=a[1][2]=a[2][1]=1;a[2][2]=0; }
M(){memset(a,0,sizeof(a)); }
friend M operator*(M a,M b)
{
M c;
for (int i=1;i<=2;i++)
for (int j=1;j<=2;j++)
for (int k=1;k<=2;k++)
{
c.a[i][j]=(c.a[i][j]+a.a[i][k]*b.a[k][j])%F;
}
return c;
}
friend M pow(M a,int b)
{
if (b==1)
{
M c(1);
return c;
}
else
{
M c=pow(a,b/2);
c=c*c;
if (b%2) return c*a;
return c;
}
}
};
int n;
int main()
{
while (cin>>n&&n!=-1)
{
if (n==0) printf("0\n");
else
{
M a=pow(M(1),n);
printf("%d\n",a.a[1][2]);
}
}
}