tf.variable_scope与tf.name_scope的用法辨析
原创
©著作权归作者所有:来自51CTO博客作者wx62d4c4d0ec83a的原创作品,请联系作者获取转载授权,否则将追究法律责任
tf.variable_scope与tf.name_scope的用法辨析
tf.variable_scope可以让变量有相同的命名,包括tf.get_variable得到的变量,还有tf.Variable的变量
tf.name_scope可以让变量有相同的命名,只是限于tf.Variable的变量
代码示例:
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
with tf.variable_scope('V1'):
a1 = tf.get_variable(name='a1',shape=[1],initializer=tf.constant_initializer(1))
a2 = tf.Variable(tf.random_normal(shape=[2,3],mean=0,stddev=1),name='a2')
with tf.variable_scope('V2'):
a3 = tf.get_variable(name='a1',shape=[1],initializer=tf.constant_initializer(1))
a4 = tf.Variable(tf.random_normal(shape=[2,3],mean=0,stddev=1),name='a2')
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print(a1.name)
print(a2.name)
print(a3.name)
print(a4.name)
output:
V1/a1:0
V1/a2:0
V2/a1:0
V2/a2:0
换成下面的代码则不能运行
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
with tf.name_scope('V1'):
a1 = tf.get_variable(name='a1',shape=[1],initializer=tf.constant_initializer(1))
a2 = tf.Variable(tf.random_normal(shape=[2,3],mean=0,stddev=1),name='a2')
with tf.name_scope('V2'):
a3 = tf.get_variable(name='a1',shape=[1],initializer=tf.constant_initializer(1))
a4 = tf.Variable(tf.random_normal(shape=[2,3],mean=0,stddev=1),name='a2')
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print(a1.name)
print(a2.name)
print(a3.name)
print(a4.name)
output:
ValueError: Variable a1 already exists, disallowed. Did you mean to set reuse=True or reuse=tf.AUTO_REUSE in VarScope? Originally defined at:
需要改成如下:
代码片
下面展示一些 内联代码片
。
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
with tf.name_scope('V1'):
#a1 = tf.get_variable(name='a1',shape=[1],initializer=tf.constant_initializer(1))
a2 = tf.Variable(tf.random_normal(shape=[2,3],mean=0,stddev=1),name='a2')
with tf.name_scope('V2'):
#a3 = tf.get_variable(name='a1',shape=[1],initializer=tf.constant_initializer(1))
a4 = tf.Variable(tf.random_normal(shape=[2,3],mean=0,stddev=1),name='a2')
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
#print(a1.name)
print(a2.name)
#print(a3.name)
print(a4.name)
output:
V1/a2:0
V2/a2:0