一、题目

【LeetCode841】钥匙和房间(dfs)_递归


提示:

  • n == rooms.length
  • 2 <= n <= 1000
  • 0 <= rooms[i].length <= 1000
  • 1 <= sum(rooms[i].length) <= 3000
  • 0 <= rooms[i][j] < n
  • 所有 rooms[i] 的值 互不相同

二、思路

dfs基础题。以测试用例2为栗子画了个图:

【LeetCode841】钥匙和房间(dfs)_dfs_02


像右边,3号为父结点和孩子结点之间是不连接的,因为0号房间已经遍历过了。

一开始用版本一的代码有些测试用例没过,找了好久是因为dfs的递归边界和访问时的操作出了问题,不应该简单用​​cur_num​​​(当前已经访问过的房间种数)进行判断是否完成任务,想法上没问题,但是我设置的​​cur_num​​​是全局变量,遍历多条路径时都会依次累加这个​​cur_num​​​值就不对啦,所以可以直接判断哈希表​​visited​​​的size是否为房间总数即可—>作为最后成功与否的判断;并且也不用​​cur_num​​了。

当然从时间复杂度的结果看,还可进一步剪枝。

三、代码

版本一:错误代码(只过了48个测试用例):

class Solution {
private:
unordered_map<int, int> visited;
//已经访问过的房间个数
int cur_num = 0;
int room_num;
public:
bool canVisitAllRooms(vector<vector<int>>& rooms) {
if(rooms.size() == 0){
return false;
}
int room_num = rooms.size();
dfs(rooms, 0, cur_num);
if(room_num == cur_num){
return true;
}else{
return false;
}
}
//cur_num为当前已经访问过的房间个数(种类)
void dfs(vector<vector<int>>& rooms, int room_id, int cur_num){
//递归边界判断
if(visited[room_id] || cur_num == room_num){
return;
}
//先访问当前的房间
//vector<int>id = rooms[room_id];
visited[room_id] = 1;
cur_num++;

//遍历当前房间拥有的钥匙的房间
for(auto& next_i: rooms[room_id]){
dfs(rooms, next_i, cur_num);
}
}
};

【LeetCode841】钥匙和房间(dfs)_测试用例_03


版本二:正确代码:

class Solution {
private:
unordered_map<int, int> visited;
//已经访问过的房间个数
int room_num;
public:
bool canVisitAllRooms(vector<vector<int>>& rooms) {
if(rooms.size() == 0){
return false;
}
int room_num = rooms.size();
dfs(rooms, 0);
if(room_num == visited.size()){
return true;
}else{
return false;
}
}
//cur_num为当前已经访问过的房间个数(种类)
void dfs(vector<vector<int>>& rooms, int room_id){
//递归边界判断
if(visited[room_id]){
return;
}
//先访问当前的房间
//vector<int>id = rooms[room_id];
visited[room_id] = 1;

//遍历当前房间拥有的钥匙的房间
for(auto& next_i: rooms[room_id]){
dfs(rooms, next_i);
}
}
};

【LeetCode841】钥匙和房间(dfs)_leetcode_04