你有没有考虑过,你的goroutines是如何被go的runtime系统调度的?是否尝试理解过为什么在程序中增加了并发,但并没有给它带来更好的性能?go执行跟踪程序可以帮助回答这些疑问,还有其他和其有关性能的问题,例如延迟、竞争和较低的并行效率。

该工具是Go 1.5版本加入的,通过度量go语言特定事件的运行时,例如:

  • 创建,启动和终止goroutines
  • 阻塞/非阻塞goroutines(syscalls, channels, locks)
  • 网络 I/O
  • Syscalls
  • 垃圾回收

Go 开箱就提供了一系列的性能监控 API 以及用于分析的工具, 可以快捷而有效地观察应用各个细节的 CPU 与内存使用概况, 包括生成一些可视化的数据(需要额外安装 ​​Graphviz​​).

​例子 gist​​​ 来自之前的 Trie 的实现, Ruby vs Go.

​main​​ 函数加上了下面几行:

import "runtime/pprof"
// ...
cpuProfile, _ := os.Create("cpu_profile")
pprof.StartCPUProfile(cpuProfile)
defer pprof.StopCPUProfile()
// ...

这里 ​​os.Create("cpu_profile")​​​ 指定生成的数据文件, 然后 ​​pprof.StartCPUProfile​​​ 看名字就知道是开始对 CPU 的使用进行监控. 有开始就有结束, 一般直接跟着 ​​defer pprof.StopCPUProfile()​​ 省的后面忘了. 编译执行一次以后会在目录下生成监控数据并记录到 cpu_profile. 接着就可以使用 pprof 来解读分析这些监控生成的数据.

When CPU profiling is enabled, the Go program stops about 100 times per second and records a sample consisting of the program counters on the currently executing goroutine’s stack.

CPU Profiling

$ go tool pprof cpu_profile
Type: cpu
Time: Jan 22, 2019 at 3:02pm (CST)
Duration: 518.52ms, Total samples = 570ms (109.93%)
Entering interactive mode (type "help" for commands, "o" for options)
(pprof)

因为是在多核环境, 所以, 取样时间(Total samples) 占比大于 100% 也属于正常的. 交互操作模式提供了一大票的命令, 执行一下 ​​help​​ 就有相应的文档了. 比如输出报告到各种格式(pdf, png, gif), 方块越大个表示消耗越大.

Go 程序的性能监控与分析 pprof_数据

又或者列出 CPU 占比最高的一些(默认十个)运行结点的 ​​top​​​ 命令, 也可以加上需要的结点数比如 ​​top15​

(pprof) top
Showing nodes accounting for 480ms, 84.21% of 570ms total
Showing top 10 nodes out of 67
flat flat% sum% cum cum%
200ms 35.09% 35.09% 210ms 36.84% main.NewNode (inline)
70ms 12.28% 47.37% 170ms 29.82% runtime.scanobject
60ms 10.53% 57.89% 70ms 12.28% runtime.greyobject
30ms 5.26% 63.16% 30ms 5.26% runtime.memclrNoHeapPointers
30ms 5.26% 68.42% 30ms 5.26% runtime.memmove
20ms 3.51% 71.93% 250ms 43.86% main.(*Node).insert
20ms 3.51% 75.44% 20ms 3.51% runtime.findObject
20ms 3.51% 78.95% 230ms 40.35% runtime.gcDrain
20ms 3.51% 82.46% 20ms 3.51% runtime.pthread_cond_wait
10ms 1.75% 84.21% 10ms 1.75% runtime.(*gcWork).tryGetFast (inline)
  • flat: 是指该函数执行耗时, 程序总耗时 570ms, ​​main.NewNode​​ 的 200ms 占了 35.09%
  • sum: 当前函数与排在它上面的其他函数的 flat 占比总和, 比如 ​​35.09% + 12.28% = 47.37%​
  • cum: 是指该函数加上在该函数调用之前累计的总耗时, 这个看图片格式的话会更清晰一些.

可以看到, 这里最耗 CPU 时间的是 ​​main.NewNode​​ 这个操作.

除此外还有 ​​list​​ 命令可以根据匹配的参数列出指定的函数相关数据, 比如:

Go 程序的性能监控与分析 pprof_结点_02

Memory Profiling

// ...
memProfile, _ := os.Create("mem_profile")
pprof.WriteHeapProfile(memProfile)

类似 CPU 的监控, 要监控内存的分配回收使用情况, 只要调用 ​​pprof.WriteHeapProfile(memProfile)​

Go 程序的性能监控与分析 pprof_结点_03

然后是跟上面一样的生成图片:

Go 程序的性能监控与分析 pprof_数据_04

Type: inuse_space 是监控内存的默认选项, 还可以选 -alloc_space, -inuse_objects, -alloc_objects

inuse_space 是正在使用的内存大小, alloc_space是从头到尾一共分配了的内存大小(包括已经回收了的), 后缀为 ​​_objects​​ 的是相应的对象数

net/http/pprof

对于 http 服务的监控有一些些的不同, 不过 Go 已经对 pprof 做了一些封装在 ​​net/http/pprof​

​例子 gist​​​ 来自​​从 net/http 入门到 Gin 源码梳理​

引入多一行 ​​_ "net/http/pprof"​​​, 启用服务以后就可以在路径 ​​/debug/pprof/​​ 看到相应的监控数据. 类似下面(已经很贴心的把各自的描述信息写在下边了):

用 wrk (brew install wrk) 模拟测试

​wrk -c 200 -t 4 -d 3m http://localhost:8080/hello​

Go 程序的性能监控与分析 pprof_结点_05

还是没有前面的那些可视化图形 UI 直观, 不过可以通过 ​​http://localhost:8080/debug/pprof/profile​​ (其他几个指标也差不多, heap, alloc…)生成一个类似前面的 CPU profile 文件监控 30s 内的数据. 然后就可以用 ​​go tool pprof​​来解读了.

Type: cpu
Time: Jan 22, 2019 at 4:22pm (CST)
Duration: 30.13s, Total samples = 1.62mins (321.66%)
Entering interactive mode (type "help" for commands, "o" for options)
(pprof) top
Showing nodes accounting for 93.78s, 96.76% of 96.92s total
Dropped 270 nodes (cum <= 0.48s)
Showing top 10 nodes out of 52
flat flat% sum% cum cum%
81.42s 84.01% 84.01% 81.45s 84.04% syscall.Syscall
3.45s 3.56% 87.57% 3.45s 3.56% runtime.kevent
2.31s 2.38% 89.95% 2.31s 2.38% runtime.pthread_cond_wait
2.06s 2.13% 92.08% 2.07s 2.14% runtime.usleep
1.93s 1.99% 94.07% 1.93s 1.99% runtime.pthread_cond_signal
1.10s 1.13% 95.20% 1.10s 1.13% runtime.freedefer
0.85s 0.88% 96.08% 0.87s 0.9% runtime.nanotime
0.59s 0.61% 96.69% 4.07s 4.20% runtime.netpoll
0.04s 0.041% 96.73% 0.67s 0.69% runtime.newproc1
0.03s 0.031% 96.76% 44.18s 45.58% net/http.(*conn).readRequest
(pprof)

Type: alloc_space
Time: Jan 22, 2019 at 4:26pm