paper:​​https://arxiv.org/pdf/2005.09007.pdf​code:​​https://github.com/NathanUA/U-2-Net​

摘要

作者设计了一个简单而强大的深层网络架构,U2-Net,用于显著目标检测(SOD)。作者的U2-Net的体系结构是一个两层嵌套的U型结构。设计具有以下优点:(1)它能够捕捉更多上下文信息从不同尺度的混合接受字段大小不同的在计划的剩余U-blocks (RSU),(2)它增加了整个架构的深度没有显著增加池的计算成本,因为这些RSU块中使用的操作。这种架构使作者能够从头开始训练一个深度网络,而不需要从图像分类任务中使用骨干。为了方便在不同的环境下使用,作者对所提出的架构U2- Net (176.3 MB, 30 FPS在GTX 1080Ti GPU上)和U2- Net+ (4.7 MB, 40 FPS)两个模型进行了实例化。这两种模型在6个SOD数据集上都具有竞争性能。

论文创新点

作者的主要贡献是一种新颖而简单的网络架构,称为U2-Net,它解决了上述两个问题。首先,U2-Net是一种为SOD设计的两层嵌套u型结构,它不使用图像分类中预先训练的骨干。它可以从零开始训练,以达到有竞争力的表现。第二,新架构允许网络深入,获得高分辨率,而不显著增加内存和计算成本。在底层,作者设计了一个新的残差U块(RSU),它能够在不降低特征图分辨率的情况下提取阶段内的多尺度特征;在顶层,有一个类似u网的结构,其中每个阶段都由一个RSU块填充。

网络结构

U2-Net_嵌套
U2-Net_图像分类_02
U2-Net_嵌套_03

实验结果

U2-Net_图像分类_04
U2-Net_嵌套_05