我们在命令行启动 substrate 节点,到底发生了什么呢?本文基于 substrate 源码,对其启动流程进行了简单的分析。
命令行启动 substrate,主要是解析命令行参数并配置服务。
主程序在substrate/node/main.rs
中,入口是main()
函数。其中的关键代码如下:
fn main() {
...
if let Err(e) = cli::run(::std::env::args(), Exit, version) {
eprintln!("Error starting the node: {}\n\n{:?}", e, e);
std::process::exit(1)
}
}
这行代码调用的是node/cli/src/lib.rs
的run
函数。进入该run
函数,有如下代码:
pub fn run<I, T, E>(args: I, exit: E, version: cli::VersionInfo) -> error::Result<()> where
I: IntoIterator<Item = T>,
T: Into<std::ffi::OsString> + Clone,
E: IntoExit,
{
match parse_and_prepare::<CustomSubcommands, NoCustom, _>(&version, "substrate-node", args) {
ParseAndPrepare::Run(cmd) => cmd.run(load_spec, exit, |exit, _cli_args, _custom_args, config| {
info!("{}", version.name);
...
}
parse_and_prepare
函数(位于core/cli/src/lib.rs
中),这个函数类似于所有的区块链启动,主要是对命令行参数进行解析,并启动相关的操作。
在parse_and_prepare
函数中,会根据不同的参数,返回不同类型的ParseAndPrepare
。
pub fn parse_and_prepare<'a, CC, RP, I>(
version: &'a VersionInfo,
impl_name: &'static str,
args: I,
) -> ParseAndPrepare<'a, CC, RP>
where
CC: StructOpt + Clone + GetLogFilter,
RP: StructOpt + Clone + AugmentClap,
I: IntoIterator,
<I as IntoIterator>::Item: Into<std::ffi::OsString> + Clone,
{
...
let matches = CoreParams::<CC, RP>::clap()
.name(version.executable_name)
.author(version.author)
.about(version.description)
.version(&(full_version + "\n")[..])
.setting(AppSettings::GlobalVersion)
.setting(AppSettings::ArgsNegateSubcommands)
.setting(AppSettings::SubcommandsNegateReqs)
.get_matches_from(args);
let cli_args = CoreParams::<CC, RP>::from_clap(&matches);
...
match cli_args {
params::CoreParams::Run(params) => ParseAndPrepare::Run(
ParseAndPrepareRun { params, impl_name, version }
),
...
}
各种参数在core/cli/src/param.rs
中有相关的定义,部分代码如下:
pub enum CoreParams<CC, RP> {
/// Run a node.
Run(MergeParameters<RunCmd, RP>),
/// Build a spec.json file, outputing to stdout.
BuildSpec(BuildSpecCmd),
/// Export blocks to a file.
ExportBlocks(ExportBlocksCmd),
/// Import blocks from file.
ImportBlocks(ImportBlocksCmd),
/// Revert chain to the previous state.
Revert(RevertCmd),
/// Remove the whole chain data.
PurgeChain(PurgeChainCmd),
/// Further custom subcommands.
Custom(CC),
}
而对于枚举类型ParseAndPrepare
,每一类结构体,均会实现各自的run
方法,解析参数生成配置,并根据配置运行服务。
pub enum ParseAndPrepare<'a, CC, RP> {
/// Command ready to run the main client.
Run(ParseAndPrepareRun<'a, RP>),
/// Command ready to build chain specs.
BuildSpec(ParseAndPrepareBuildSpec<'a>),
/// Command ready to export the chain.
ExportBlocks(ParseAndPrepareExport<'a>),
/// Command ready to import the chain.
ImportBlocks(ParseAndPrepareImport<'a>),
/// Command ready to purge the chain.
PurgeChain(ParseAndPreparePurge<'a>),
/// Command ready to revert the chain.
RevertChain(ParseAndPrepareRevert<'a>),
/// An additional custom command passed to `parse_and_prepare`.
CustomCommand(CC),
}
以结构体ParseAndPrepareRun
为例,其run
函数的实现代码如下:
impl<'a, RP> ParseAndPrepareRun<'a, RP> {
/// Runs the command and runs the main client.
pub fn run<C, G, S, E, RS>(
self,
spec_factory: S,
exit: E,
run_service: RS,
) -> error::Result<()>
where S: FnOnce(&str) -> Result<Option<ChainSpec<G>>, String>,
RP: StructOpt + Clone,
C: Default,
G: RuntimeGenesis,
E: IntoExit,
RS: FnOnce(E, RunCmd, RP, Configuration<C, G>) -> Result<(), String>
{
let config = create_run_node_config(self.params.left.clone(), spec_factory, self.impl_name, self.version)?;
run_service(exit, self.params.left, self.params.right, config).map_err(Into::into)
}
}
其实执行服务,具体是在run
函数的闭包函数中,代码如下:
ParseAndPrepare::Run(cmd) => cmd.run(load_spec, exit, |exit, _cli_args, _custom_args, config| {
info!("{}", version.name);
info!(" version {}", config.full_version());
info!(" by Parity Technologies, 2017-2019");
info!("Chain specification: {}", config.chain_spec.name());
info!("Node name: {}", config.name);
info!("Roles: {:?}", config.roles);
let runtime = RuntimeBuilder::new().name_prefix("main-tokio-").build()
.map_err(|e| format!("{:?}", e))?;
match config.roles {
ServiceRoles::LIGHT => run_until_exit(
runtime,
service::Factory::new_light(config).map_err(|e| format!("{:?}", e))?,
exit
),
_ => run_until_exit(
runtime,
service::Factory::new_full(config).map_err(|e| format!("{:?}", e))?,
exit
),
}.map_err(|e| format!("{:?}", e))
}),
- 首先使用
tokio
库构建一个runtime
, - 然后根据节点角色配置,分别传入全节点或轻节点服务,调用
run_until_exit
函数。 - 最后在函数中,调用
tokio runtime
启动线程,将由service
构建出的`Future informant
绑定到event loop
上面定期轮询。代码如下:
fn run_until_exit<T, C, E>(
mut runtime: Runtime,
service: T,
e: E,
) -> error::Result<()>
where
T: Deref<Target=substrate_service::Service<C>> + Future<Item = (), Error = ()> + Send + 'static,
C: substrate_service::Components,
E: IntoExit,
{
...
let informant = cli::informant::build(&service);
runtime.executor().spawn(exit.until(informant).map(|_| ()));
...
Ok(())
}
代码中调用了core/cli/src/informant.rs
的build
函数,创建了一个Futrue
“线人”informant
。
基本上到这儿,相关的命令就全启动了。我们看下生成全节点或轻节点服务的具体细节。
宏construct_service_factory
在声明宏construct_service_factory
的定义中,有如下代码:
#[macro_export]
macro_rules! construct_service_factory {
...
FullService = $full_service:ty { $( $full_service_init:tt )* },
AuthoritySetup = { $( $authority_setup:tt )* },
LightService = $light_service:ty { $( $light_service_init:tt )* },
...
fn new_light(
config: $crate::FactoryFullConfiguration<Self>
) -> $crate::Result<Self::LightService, $crate::Error>
{
( $( $light_service_init )* ) (config)
}
fn new_full(
config: $crate::FactoryFullConfiguration<Self>
) -> Result<Self::FullService, $crate::Error>
{
( $( $full_service_init )* ) (config).and_then(|service| {
($( $authority_setup )*)(service)
})
}
...
}
在node/cli/src/service.rs
中,包含了service结合service中的对宏的调用,宏展开后,是执行的<Factory>::new(config)
,代码如下:
construct_service_factory! {
struct Factory {
...
FullService = FullComponents<Self> {
|config: FactoryFullConfiguration<Self>| FullComponents::<Factory>::new(config)
},
...
LightService = LightComponents<Self>
{ |config| <LightComponents<Factory>>::new(config) },
...
}
服务组件service
在core/service/src/components.rs
中定义了substrate的服务组件:FullComponents
和LightComponents
。它们new
函数的实现均调用了Service
的new
函数,代码如下:
Ok(
Self {
service: Service::new(config)?,
}
)
通过该函数创建substrate service
,它会启动客户端,初始化session keys
,构建网络,交易池以及RPC
,并管理他们之间的通信,包括区块通知,交易通知等。关键代码如下:
let executor = NativeExecutor::new(config.default_heap_pages);
...
Components::RuntimeServices::generate_intial_session_keys(
client.clone(),
config.dev_key_seed.clone().map(|s| vec![s]).unwrap_or_default(),
)?;
...
let network_protocol = <Components::Factory>::build_network_protocol(&config)?;
let transaction_pool = Arc::new(
Components::build_transaction_pool(config.transaction_pool.clone(), client.clone())?
);
...
let events = client.import_notification_stream()
.map(|v| Ok::<_, ()>(v)).compat()
.for_each(move |notification| {
let number = *notification.header.number();
...
let events = transaction_pool.import_notification_stream()
.for_each(move |_| {
...
Ok(Service {
client,
network,
network_status_sinks,
select_chain,
transaction_pool,
signal: Some(signal),
to_spawn_tx,
to_spawn_rx,
to_poll: Vec::new(),
config,
exit,
rpc_handlers,
_rpc: rpc,
_telemetry: telemetry,
_offchain_workers: offchain_workers,
_telemetry_on_connect_sinks: telemetry_connection_sinks.clone(),
keystore,
})
这个有些类似于以太坊,在启动节点时把相关的网络服务都创建好。这样最后Ok返回整个Service
。
PS:源码分析是基于master分支(substrate 2.0)。
1. 其中对命令行参数的解析,使用了第三方库structopt
,该库通过结构体来解析参数,并对clap
库进行了补充。
2. 异步编程,使用了第三方库tokio
,该库使用Reactor-Executor模式,是基于事件驱动的非阻塞I/O库。是 Rust 中的异步编程框架,它将复杂的异步编程抽象为 Futures、Tasks 和 Executor,并提供了 Timers 等基础设施。