//蓝多多算法实验六
using namespace std;
//最大顶点数
typedef char VertexType;//顶点类型
typedef int EdgeType;//边的权值
typedef struct
{
VertexType vexs[MAXVEX];//顶点表
EdgeType edges[MAXVEX][MAXVEX];//邻接矩阵
int n, e;//顶点数和边数
}MGraph;
MGraph CreateMGraph(int pd)//建立邻接矩阵
{
MGraph G;
int i, j, k, n;
cout << "请输入顶点数和边数:";
cin >> G.n >> G.e;
cout << "请输入顶点信息:";
for (i = 0; i < G.n; i++)
cin >> G.vexs[i];
for (i = 0; i < G.n; i++)
for (j = 0; j < G.n; j++)
G.edges[i][j] = 0;//初始化邻接矩阵
cout << "请输入每条边对应的两个顶点的序号及权重:\n例:0 1 2 表示标注的第0个顶点和第1个顶点之间有边且权重为2 (注意序号从0开始)\n";
for (n = 0; n < G.e; n++)
{
cin >> i >> j >> k;//输入边的信息
G.edges[i][j] = k;
if (pd == 0)//无向图,边是双向的
G.edges[j][i] = k;
}
return G;
}
void DisplayMGraph(MGraph G, int pd)//分行输出
{
for (int i = 0; i < G.n; i++)//第i个顶点(行)
{
cout << "第" << i + 1 << "行:";
for (int j = 0; j < G.n; j++)//第j列
if (pd == 0 && G.edges[i][j] == 0)
cout << "∞" << "\t";
else
cout << G.edges[i][j] << "\t";
cout << "\n";
}
}
int OutDegree(MGraph G, int i)//(出)度(求第i个顶点表中的结点数)
{
int degree = 0;
for (int j = 0; j < G.n; j++)
if (G.edges[i][j] != 0)
degree++;
return degree;
}
int InDegree(MGraph G, int i)//入度
{
int degree = 0;
for (int j = 0; j < G.n; j++)
if (G.edges[j][i] != 0)
degree++;
return degree;
}
void PrintOut(MGraph G, int pd)//度
{
int all;
if (pd == 0)//无向图
for (int i = 0; i < G.n; i++)
cout << "第" << i << "个顶点" << G.vexs[i] << "的度是" << OutDegree(G, i) << endl;
else//有向图
for (int i = 0; i < G.n; i++)
{
cout << "第" << i << "个顶点" << G.vexs[i] << "的出度是" << OutDegree(G, i) << ",入度是" << InDegree(G, i) << endl;
all = OutDegree(G, i) + InDegree(G, i);
cout << "第" << i << "个顶点" << G.vexs[i] << "的度是" << all << endl;
}
}
int main()
{
//判断是有向图还是无向图//
cout << "如果是无向图,请输入0;如果是有向图,请输入1:";
int pd;
cin >> pd;
if (pd != 0 && pd != 1)
{
cout << "输入有误,请退出重新输入0或1。";
return 0;
}
MGraph G = CreateMGraph(pd);
cout << "\n分行输出该邻接矩阵为:\n";
DisplayMGraph(G, pd);
PrintOut(G, pd);
system("pause");
return 0;
}