<<小白学PyTorch>>
小白学PyTorch | 9 tensor数据结构与存储结构
小白学PyTorch | 8 实战之MNIST小试牛刀
小白学PyTorch | 7 最新版本torchvision.transforms常用API翻译与讲解
小白学PyTorch | 6 模型的构建访问遍历存储(附代码)
小白学PyTorch | 5 torchvision预训练模型与数据集全览
小白学PyTorch | 4 构建模型三要素与权重初始化
小白学PyTorch | 3 浅谈Dataset和Dataloader
小白学PyTorch | 2 浅谈训练集验证集和测试集
参考目录:
- 1 矩阵与标量
- 2 哈达玛积
- 3 矩阵乘法
- 4 幂与开方
- 5 对数运算
- 6 近似值运算
- 7 剪裁运算
这一课主要是讲解PyTorch中的一些运算,加减乘除这些,当然还有矩阵的乘法这些。这一课内容不多,作为一个知识储备。在后续的内容中,有用PyTorch来获取EfficientNet预训练模型以及一个猫狗分类的实战任务教学,EfficientNet是13课,猫狗分类是14课,11课是MobileNet详解和PyTorch代码解析,12课是SENet详解和PyTorch代码解析(因为EfficientNet是基于这两个网络构成的)。再往后我计划整理一些这两年比较优秀的论文和代码,一些提升准确率的有效的技巧等,当然PyTorch的各种优化器我还没有细讲(不过一般都是SGDM了)。
希望大家喜欢这个系列~也真心希望大家可以帮忙宣传扩散给想学习PyTorch的朋友,小编在这里感谢各位了。
加减乘除就不多说了,+-*/
1 矩阵与标量
这个是矩阵(张量)每一个元素与标量进行操作。
2 哈达玛积
这个就是两个相同尺寸的张量相乘,然后对应元素的相乘就是这个哈达玛积,也成为element wise。
这个torch.mul()
和*
是等价的。
当然,除法也是类似的:
我们可以发现的torch.div()
其实就是/
, 类似的:torch.add
就是+
,torch.sub()
就是-
,不过符号的运算更简单常用。
3 矩阵乘法
如果我们想实现线性代数中的矩阵相乘怎么办呢?
这样的操作有三个写法:
-
torch.mm()
-
torch.matmul()
-
@
,这个需要记忆,不然遇到这个可能会挺蒙蔽的
输出结果:
这是对二维矩阵而言的,假如参与运算的是一个多维张量,那么只有torch.matmul()
可以使用。等等,多维张量怎么进行矩阵的惩罚?在多维张量中,参与矩阵运算的其实只有后两个维度,前面的维度其实就像是索引一样,举个例子:
可以看到,其实矩阵乘法的时候,看后两个维度: 乘上 ,得到一个 的矩阵。前面的维度要求相同,像是索引一样,决定哪两个 和 相乘。
小提示:
这样也是可以相乘的,因为这里涉及一个自动传播Broadcasting机制,这个在后面会讲,这里就知道,如果这种情况下,会把b的第一维度复制3次 ,然后变成和a一样的尺寸,进行矩阵相乘。
4 幂与开方
和上面一样,不多说了。开方运算可以用torch.sqrt(),当然也可以用a**(0.5)。
5 对数运算
在上学的时候,我们知道ln是以e为底的,但是在pytorch中,并不是这样。
pytorch中log是以e自然数为底数的,然后log2和log10才是以2和10为底数的运算。
6 近似值运算
-
.ceil()
向上取整 -
.floor()
向下取整 -
.trunc()
取整数 -
.frac()
取小数 -
.round()
四舍五入
7 剪裁运算
这个是让一个数,限制在你自己设置的一个范围内[min,max],小于min的话就被设置为min,大于max的话就被设置为max。这个操作在一些对抗生成网络中,好像是WGAN-GP,通过强行限制模型的参数的值。
输出为:
- END -