SIFT原理:

  • 尺度空间极值检测:构建高斯金字塔,高斯差分金字塔,检测极值点。
  • 关键点定位:去除对比度较小和边缘对极值点的影响。
  • 关键点方向确定:利用梯度直方图确定关键点的方向。
  • 关键点描述:对关键点周围图像区域分块,计算块内的梯度直方图,生成具有特征向量,对关键点信息进行描述。

在OpenCV中利用SIFT检测关键点的流程如下所示:

1.实例化sift

sift = cv.xfeatures2d.SIFT_create()

2.利用sift.detectAndCompute()检测关键点并计算

kp,des = sift.detectAndCompute(gray,None)

参数:

  • gray: 进行关键点检测的图像,注意是灰度图像

返回:

  • kp: 关键点信息,包括位置,尺度,方向信息
  • des: 关键点描述符,每个关键点对应128个梯度信息的特征向量

3.将关键点检测结果绘制在图像上

cv.drawKeypoints(image, keypoints, outputimage, color, flags)

参数:

  • image: 原始图像
  • keypoints:关键点信息,将其绘制在图像上
  • outputimage:输出图片,可以是原始图像
  • color:颜色设置,通过修改(b,g,r)的值,更改画笔的颜色,b=蓝色,g=绿色,r=红色。
  • flags:绘图功能的标识设置
    1.cv2.DRAW_MATCHES_FLAGS_DEFAULT:创建输出图像矩阵,使用现存的输出图像绘制匹配对和特征点,对每一个关键点只绘制中间。
    2.cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG:不创建输出图像矩阵,而是在输出图像上绘制匹配对。
    3.cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS:对每一个特征点绘制带大小和方向的关键点图形。
    4.cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS:单点的特征点不被绘制。
 import cv2 as cv
import matplotlib.pyplot as plt

# 1 读取图像
img = cv.imread('./1.jpg')
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

# 2 sift关键点检测
# 2.1 实例化sift对象
sift = cv.xfeatures2d.SIFT_create()

# 2.2 关键点检测:kp关键点信息包括方向,尺度,位置信息,des是关键点的描述符
kp, des = sift.detectAndCompute(gray, None)

# 2.3 在图像上绘制关键点的检测结果
cv.drawKeypoints(img, kp, img, flags=cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

# 3 图像显示
plt.figure(figsize=(8, 6), dpi=100)
plt.imshow(img[:, :, ::-1]), plt.title('sift检测')
plt.xticks([]), plt.yticks([])
plt.show()

OpenCV SIFT检测关键点_特征点