Let's call a positive integer composite if it has at least one divisor other than 1 and itself. For example:

the following numbers are composite: 1024, 4, 6, 9;
the following numbers are not composite: 13, 1, 2, 3, 37.
You are given a positive integer n. Find two composite integers a,b such that a−b=n.

It can be proven that solution always exists.

Input
The input contains one integer n (1≤n≤107): the given integer.

Output
Print two composite integers a,b (2≤a,b≤109,a−b=n).

It can be proven, that solution always exists.

If there are several possible solutions, you can print any.

Examples
inputCopy
1
outputCopy
9 8
inputCopy
512
outputCopy
4608 4096
#include<iostream>
#include<math.h>
#include<stdio.h>
using namespace std;
typedef long long ll;
const ll maxv=1e7+10;
ll is_prime[maxv];
void sieve(ll n){
//ll t=0;
for(ll i=0;i<=n;i++){//将初值均赋值为true
is_prime[i]=true;
}
for(ll i=2;i<=n;i++){
if(is_prime[i]){
//t++;
for(ll j=2*i;j<=n;j+=i){
is_prime[j]=false;
}
}
}
//cout<<t<<endl;
}
int main(){
sieve(maxv);
ll n=0;
cin>>n;
ll a=0;
for(ll b=1;b<=1e7;b++){
a=b+n;
if(!is_prime[a] && !is_prime[b]){
cout<<a<<" "<<b;
break;
}
}
return 0;
}