故事从好多年前说起。
想必大家也听说过数据库单表建议最大2kw条数据这个说法。如果超过了,性能就会下降得比较厉害。
巧了。
我也听说过。
但我不接受它的建议,硬是单表装了1亿条数据。
这时候,我们组里新来的实习生看到了之后,天真无邪的问我:"单表不是建议最大两千万吗?为什么这个表都放了1个亿还不分库分表"?
我能说我是因为懒吗?我当初设计时哪里想到这表竟然能涨这么快。。。
我不能。
说了等于承认自己是开发组里的毒瘤,虽然我确实是,但我不能承认。
我如坐针毡,如芒刺背,如鲠在喉。
开始了一波骚操作。
"我这么做是有道理的"
"虽然这个表很大,但你有没有发现它查询其实还是很快"
"这个2kw是个建议值,我们要来看下这个2kw是怎么来的"
数据库单表行数最大多大?
我们先看下单表行数理论最大值是多少。
建表的SQL是这么写的,
其中id就是主键。主键本身唯一,也就是说主键的大小可以限制表的上限。
如果主键声明为int
大小,也就是32位,那么能支持2^32-1,也就是21个亿左右。
如果是bigint
,那就是2^64-1,但这个数字太大,一般还没到这个限制之前,磁盘先受不了。
搞离谱点。
如果我把主键声明为 tinyint
,一个字节,8位,最大2^8-1,也就是255
。
如果我想插入一个id=256的数据,那就会报错。
也就是说,tinyint
主键限制表内最多255条数据。
那除了主键,还有哪些因素会影响行数?
索引的结构
索引内部是用的B+树,这个也是八股文老股了,大家估计也背得很熟了。
为了不让大家有过于强烈的审丑疲劳,今天我尝试从另外一个角度给大家讲讲这玩意。
页的结构
假设我们有这么一张user数据表。
user表
其中id是唯一主键。
这看起来的一行行数据,为了方便,我们后面就叫它们record吧。
这张表看起来就跟个excel表格一样。excel的数据在硬盘上是一个xx.excel的文件。
而上面user表数据,在硬盘上其实也是类似,放在了user.ibd文件下。含义是user表的innodb data文件,专业点,又叫表空间。
虽然在数据表里,它们看起来是挨在一起的。但实际上在user.ibd里他们被分成很多小份的数据页,每份大小16k。
类似于下面这样。
ibd文件内部有大量的页
我们把视角聚焦一下,放到页上面。
整个页16k
,不大,但record这么多,一页肯定放不下,所以会分开放到很多页里。并且这16k,也不可能全用来放record对吧。
因为record们被分成好多份,放到好多页里了,为了唯一标识具体是哪一页,那就需要引入页号(其实是一个表空间的地址偏移量)。同时为了把这些数据页给关联起来,于是引入了前后指针,用于指向前后的页。这些都被加到了页头里。
页是需要读写的,16k说小也不小,写一半电源线被拔了也是有可能发生的,所以为了保证数据页的正确性,还引入了校验码。这个被加到了页尾。
那剩下的空间,才是用来放我们的record的。而record如果行数特别多的话,进入到页内时挨个遍历,效率也不太行,所以为这些数据生成了一个页目录,具体实现细节不重要。只需要知道,它可以通过二分查找的方式将查找效率从O(n) 变成O(lgn)。
页结构
从页到索引
如果想查一条record,我们可以把表空间里每一页都捞出来,再把里面的record捞出来挨个判断是不是我们要找的。
行数量小的时候,这么操作也没啥问题。
行数量大了,性能就慢了,于是为了加速搜索,我们可以在每个数据页里选出主键id最小的record,而且只需要它们的主键id和所在页的页号。组成新的record,放入到一个新生成的一个数据页中,这个新数据页跟之前的页结构没啥区别,而且大小还是16k。
但为了跟之前的数据页进行区分。数据页里加入了页层级(page level)的信息,从0开始往上算。于是页与页之间就有了上下层级的概念,就像下面这样。
两层B+树结构
突然页跟页之间看起来就像是一棵倒过来的树了。也就是我们常说的B+树索引。
最下面那一层,page level 为0,也就是所谓的叶子结点,其余都叫非叶子结点。
上面展示的是两层的树,如果数据变多了,我们还可以再通过类似的方法,再往上构建一层。就成了三层的树。
三层B+树结构
那现在我们就可以通过这样一棵B+树加速查询。举个例子。
比方说我们想要查找行数据5。会先从顶层页的record们入手。record里包含了主键id和页号(页地址)。看下图黄色的箭头,向左最小id是1,向右最小id是7。那id=5的数据如果存在,那必定在左边箭头。于是顺着的record的页地址就到了6号
数据页里,再判断id=5>4,所以肯定在右边的数据页里,于是加载105号
数据页。在数据页里找到id=5的数据行,完成查询。
B+树查询过程
另外需要注意的是,上面的页的页号并不是连续的,它们在磁盘里也不一定是挨在一起的。
这个过程中查询了三个页,如果这三个页都在磁盘中(没有被提前加载到内存中),那么最多需要经历三次磁盘IO查询,它们才能被加载到内存中。
B+树承载的记录数量
从上面的结构里可以看出B+树的最末级叶子结点里放了record数据。而非叶子结点里则放了用来加速查询的索引数据。
也就是说
同样一个16k的页,非叶子节点里每一条数据都指向一个新的页,而新的页有两种可能。
- 如果是末级叶子节点的话,那么里面放的就是一行行record数据。
- 如果是非叶子节点,那么就会循环继续指向新的数据页。
假设
- 非叶子结点内指向其他内存页的指针数量为
x
- 叶子节点内能容纳的record数量为
y
- B+树的层数为
z
总行数的计算方法
那这棵B+树放的行数据总量等于 (x ^ (z-1)) * y
。
x怎么算
我们回去看数据页的结构。
页结构
非叶子节点里主要放索引查询相关的数据,放的是主键和指向页号。
主键假设是bigint(8Byte)
,而页号在源码里叫FIL_PAGE_OFFSET(4Byte)
,那么非叶子节点里的一条数据是12Byte
左右。
整个数据页16k
, 页头页尾那部分数据全加起来大概128Byte
,加上页目录毛估占1k
吧。那剩下的15k除以12Byte
,等于1280
,也就是可以指向x=1280页。
我们常说的二叉树指的是一个结点可以发散出两个新的结点。m叉树一个节点能指向m个新的结点。这个指向新节点的操作就叫扇出(fanout)。
而上面的B+树,它能指向1280个新的节点,恐怖如斯,可以说扇出非常高了。
y的计算
叶子节点和非叶子节点的数据结构是一样的,所以也假设剩下15kb
可以发挥。
叶子节点里放的是真正的行数据。假设一条行数据1kb
,所以一页里能放y=15行。
行总数计算
回到 (x ^ (z-1)) * y
这个公式。
已知x=1280
,y=15
。
假设B+树是两层,那z=2
。则是(1280 ^ (2-1)) * 15 ≈ 2w
假设B+树是三层,那z=3
。则是(1280 ^ (3-1)) * 15 ≈ 2.5kw
这个2.5kw,就是我们常说的单表建议最大行数2kw的由来。毕竟再加一层,数据就大得有点离谱了。三层数据页对应最多三次磁盘IO,也比较合理。
行数超一亿就慢了吗?
上面假设单行数据用了1kb,所以一个数据页能放个15行数据。
如果我单行数据用不了这么多,比如只用了250byte
。那么单个数据页能放60行数据。
那同样是三层B+树,单表支持的行数就是 (1280 ^ (3-1)) * 60 ≈ 1个亿
。
你看我一个亿的数据,其实也就三层B+树,在这个B+树里要查到某行数据,最多也是三次磁盘IO。所以并不慢。
这就很好的解释了文章开头,为什么我单表1个亿,但查询性能没啥大毛病。
B树承载的记录数量
既然都聊到这里了,我们就顺着这个话题多聊一些吧。
我们都知道,现在mysql的索引都是B+树,而有一种树,跟B+树很像,叫B树,也叫B-树。
它跟B+树最大的区别在于,B+树只在末级叶子结点处放数据表行数据,而B树则会在叶子和非叶子结点上都放。
于是,B树的结构就类似这样
B树结构
B树将行数据都存在非叶子节点上,假设每个数据页还是16kb,掐头去尾每页剩15kb,并且一条数据表行数据还是占1kb,就算不考虑各种页指针的情况下,也只能放个15条数据。数据页扇出明显变少了。
计算可承载的总行数的公式也变成了一个等比数列。
其中z还是层数的意思。
为了能放2kw
左右的数据,需要z>=6
。也就是树需要有6层,查一次要访问6个页。假设这6个页并不连续,为了查询其中一条数据,最坏情况需要进行6次磁盘IO。
而B+树同样情况下放2kw数据左右,查一次最多是3次磁盘IO。
磁盘IO越多则越慢,这两者在性能上差距略大。
为此,B+树比B树更适合成为mysql的索引。
总结
- B+树叶子和非叶子结点的数据页都是16k,且数据结构一致,区别在于叶子节点放的是真实的行数据,而非叶子结点放的是主键和下一个页的地址。
- B+树一般有两到三层,由于其高扇出,三层就能支持2kw以上的数据,且一次查询最多1~3次磁盘IO,性能也还行。
- 存储同样量级的数据,B树比B+树层级更高,因此磁盘IO也更多,所以B+树更适合成为mysql索引。
- 索引结构不会影响单表最大行数,2kw也只是推荐值,超过了这个值可能会导致B+树层级更高,影响查询性能。
- 单表最大值还受主键大小和磁盘大小限制。
最后
虽然我在单表里塞了1亿条数据,但这个操作的前提是,我很清楚这不会太影响性能。
这波解释,毫无破绽,无懈可击。
到这里,连我自己都被自己说服了。想必实习生也是。
可恶,这该死的毒瘤竟然有些"知识渊博"。