[TJOI2013]松鼠聚会 BZOJ 3170




题目描述

草原上住着一群小松鼠,每个小松鼠都有一个家。时间长了,大家觉得应该聚一聚。但是草原非常大,松鼠们都很头疼应该在谁家聚会才最合理。

每个小松鼠的家可以用一个点x,y表示,两个点的距离定义为点(x,y)和它周围的8个点(x-1,y)(x+1,y),(x,y-1),(x,y+1).(x-1,y+1),(x-1,y-1),(x+1,y+1),(x+1,y-1)距离为1。

输入输出格式


输入格式:


第一行是一个整数N,表示有多少只松鼠。接下来N行,第i行是两个整数x和y,表示松鼠i的家的坐标


输出格式:


一个整数,表示松鼠为了聚会走的路程和最小是多少。

输入输出样例



输入样例#1: 复制

6 -4 -1 -1 -2 2 -4 0 2 0 3 5 -2



输出样例#1: 复制

20



输入样例#2: 复制

6 0 0 2 0 -5 -2 2 -2 -1 2 4 0



输出样例#2: 复制

15



说明

样例解释

在第一个样例中,松鼠在第二只松鼠家(-1,-2)聚会;在第二个样例中,松鼠在第一只松鼠家(0.0)聚会。

数据范围

30%的数据,0 ≤ N ≤ 1000

100%的数据,0 ≤ N ≤ 100000; −10^9 ≤ x, y ≤ 10^9

 

 

首先我们要求的是 切比雪夫距离。

也就是 dis=max( |dx|,|dy|);

看样子可能不太好求解;

想办法转换为 曼哈顿距离;

在(x,y)坐标系中进行变换----> ( (x+y)/2,(x-y)/2 );

可以发现原坐标系中的 切比雪夫距离 就是新坐标系中的 曼哈顿距离 ;

(推一下即可);

 

那么我们考虑用 曼哈顿距离求解:

∑Mdis(i,k) 即该值最小;

将其变为有序方便处理(不妨设为升序);

即 Mdis(1,i)+Mdis(2,i)+...+Mdis(n,i)

现以X坐标为例:

即 x[ i ]-x[ 1 ]+x[ i ]-x[ 2 ]+...+x[ i+1 ]-x[ i ]+...x[ n ]-x[ i ]

= i*x[ i ]- sum[ i ]+sum[ n ]-sum[ i ]+(n-i)*x[ i ];

那么就可以用前缀和进行维护了;



#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>

//#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 300005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long  ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)

inline ll rd() {
    ll x = 0;
    char c = getchar();
    bool f = false;
    while (!isdigit(c)) {
        if (c == '-') f = true;
        c = getchar();
    }
    while (isdigit(c)) {
        x = (x << 1) + (x << 3) + (c ^ 48);
        c = getchar();
    }
    return f ? -x : x;
}

ll gcd(ll a, ll b) {
    return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; }

/*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
    if (!b) {
        x = 1; y = 0; return a;
    }
    ans = exgcd(b, a%b, x, y);
    ll t = x; x = y; y = t - a / b * y;
    return ans;
}
*/



ll qpow(ll a, ll b, ll c) {
    ll ans = 1;
    a = a % c;
    while (b) {
        if (b % 2)ans = ans * a%c;
        b /= 2; a = a * a%c;
    }
    return ans;
}

int n;
int x[maxn], y[maxn];
ll ans, tmp, sumx[maxn], sumy[maxn];
struct node {
    ll x, y;
}a[maxn];

int main()
{
    //ios::sync_with_stdio(0);
    rdint(n);
    for (int i = 1; i <= n; i++) {
        int xx, yy;
        rdint(xx); rdint(yy);
        x[i] = a[i].x = xx + yy; y[i] = a[i].y = xx - yy;
    }
    sort(x + 1, x + 1 + n); sort(y + 1, y + 1 + n);
    for (int i = 1; i <= n; i++)
        sumx[i] = sumx[i - 1] + x[i], sumy[i] = sumy[i - 1] + y[i];
    ans = 100000000000000000;
    for (int i = 1; i <= n; i++) {
        int pos = lower_bound(x + 1, x + 1 + n, a[i].x) - x;
        tmp = sumx[n] - sumx[pos] - a[i].x*(n - pos) + pos * a[i].x - sumx[pos];
        pos = lower_bound(y + 1, y + 1 + n, a[i].y) - y;
        tmp += sumy[n] - sumy[pos] - a[i].y*(n - pos) + a[i].y*pos - sumy[pos];
        ans = min(ans, tmp);
    }
    cout << ans / 2 << endl;
    return 0;
}