网上搜寻到的代码,亲测比较好用,分享如下。
import gym
import time
env = gym.make('CartPole-v0') # 获得游戏环境
observation = env.reset() # 复位游戏环境,新一局游戏开始
print ('新一局游戏 初始观测 = {}'.format(observation))
for t in range(200):
env.render()
action = env.action_space.sample() # 随机选择动作
print ('{}: 动作 = {}'.format(t, action))
observation, reward, done, info = env.step(action) # 执行行为
print ('{}: 观测 = {}, 本步得分 = {}, 结束指示 = {}, 其他信息 = {}'.format(
t, observation, reward, done, info))
if done:
break
time.sleep(1)#可加可不加,有的话就可以看到图
env.close()
以下给出多个回合的代码:
import gym
env = gym.make('CartPole-v0')
n_episode = 20
for i_episode in range(n_episode):
observation = env.reset()
episode_reward = 0
while True:
# env.render()
action = env.action_space.sample() # 随机选
observation, reward, done, _ = env.step(action)
episode_reward += reward
state = observation
if done:
break
print ('第{}局得分 = {}'.format(i_episode, episode_reward))
env.close()
这次的多回合游戏并没有加入绘图,需要绘图的话可以将 env.render() 加入。
构建一个完整的 DQN 网络, 代码如下:
#encoding:UTF-8
#Cart Pole Environment
import gym
env = gym.make('CartPole-v0')
#搭建 DQN
import torch.nn as nn
model = nn.Sequential(
nn.Linear(env.observation_space.shape[0], 128),
nn.ReLU(),
nn.Linear(128, 128),
nn.ReLU(),
nn.Linear(128, env.action_space.n)
)
import random
def act(model, state, epsilon):
if random.random() > epsilon: # 选最大的
state = torch.FloatTensor(state).unsqueeze(0)
q_value = model.forward(state)
action = q_value.max(1)[1].item()
else: # 随便选
action = random.randrange(env.action_space.n)
return action
#训练
# epsilon值不断下降
import math
def calc_epsilon(t, epsilon_start=1.0,
epsilon_final=0.01, epsilon_decay=500):
epsilon = epsilon_final + (epsilon_start - epsilon_final) \
* math.exp(-1. * t / epsilon_decay)
return epsilon
# 最近历史缓存
import numpy as np
from collections import deque
batch_size = 32
class ReplayBuffer(object):
def __init__(self, capacity):
self.buffer = deque(maxlen=capacity)
def push(self, state, action, reward, next_state, done):
state = np.expand_dims(state, 0)
next_state = np.expand_dims(next_state, 0)
self.buffer.append((state, action, reward, next_state, done))
def sample(self, batch_size):
state, action, reward, next_state, done = zip( \
*random.sample(self.buffer, batch_size))
concat_state = np.concatenate(state)
concat_next_state = np.concatenate(next_state)
return concat_state, action, reward, concat_next_state, done
def __len__(self):
return len(self.buffer)
replay_buffer = ReplayBuffer(1000)
import torch.optim
optimizer = torch.optim.Adam(model.parameters())
gamma = 0.99
episode_rewards = [] # 各局得分,用来判断训练是否完成
t = 0 # 训练步数,用于计算epsilon
while True:
# 开始新的一局
state = env.reset()
episode_reward = 0
while True:
epsilon = calc_epsilon(t)
action = act(model, state, epsilon)
next_state, reward, done, _ = env.step(action)
replay_buffer.push(state, action, reward, next_state, done)
state = next_state
episode_reward += reward
if len(replay_buffer) > batch_size:
# 计算时间差分误差
sample_state, sample_action, sample_reward, sample_next_state, \
sample_done = replay_buffer.sample(batch_size)
sample_state = torch.tensor(sample_state, dtype=torch.float32)
sample_action = torch.tensor(sample_action, dtype=torch.int64)
sample_reward = torch.tensor(sample_reward, dtype=torch.float32)
sample_next_state = torch.tensor(sample_next_state,
dtype=torch.float32)
sample_done = torch.tensor(sample_done, dtype=torch.float32)
next_qs = model(sample_next_state)
next_q, _ = next_qs.max(1)
expected_q = sample_reward + gamma * next_q * (1 - sample_done)
qs = model(sample_state)
q = qs.gather(1, sample_action.unsqueeze(1)).squeeze(1)
td_error = expected_q - q
# 计算 MSE 损失
loss = td_error.pow(2).mean()
# 根据损失改进网络
optimizer.zero_grad()
loss.backward()
optimizer.step()
t += 1
if done: # 本局结束
i_episode = len(episode_rewards)
print ('第{}局收益 = {}'.format(i_episode, episode_reward))
episode_rewards.append(episode_reward)
break
if len(episode_rewards) > 20 and np.mean(episode_rewards[-20:]) > 195:
break # 训练结束
#使用 (固定 ϵ 的值为0)
n_episode = 20
for i_episode in range(n_episode):
observation = env.reset()
episode_reward = 0
while True:
# env.render()
action = act(model, observation, 0)
observation, reward, done, _ = env.step(action)
episode_reward += reward
state = observation
if done:
break
print ('第{}局得分 = {}'.format(i_episode, episode_reward))
训练过程:
测试过程:
以上代码来自:
该书阅读后个人感觉非常好,照比市面上的同类pytorch书籍相比该书虽然略显深奥,但是各方面的讲解脉络十分的清晰,在同类书籍中首推,而且全书所有代码都可以跑通,十分的难得。