在人工智能(artificial intelligence, AI)的宏伟画卷上,大模型如同绚烂的星辰,照亮了技术的未来,不仅重塑了人们对技术的认知,更在无数行业中悄然引发变革。然而,这些智能技术并非完美,也存在风险和挑战。在此,我们将揭开大模型的神秘面纱,分享其技术与特点,剖析其发展与挑战,一窥AI时代的风采。

大模型例如生成式预训练(generative pre-trained transformer, GPT)系列在自然语言处理(natural language processing, NLP)领域取得了显著成就,在诸多语言处理任务上刷新了多项性能基准。除语言之外,大模型在图像处理、音频处理、生理信号等其他数据模态中也显示出巨大优势。在教育、医疗、金融等领域也得到快速应用,特别是在内容生成方面技惊四座。现如今,大模型依然有诸多前沿技术亟待发展,同时带来的一系列如偏见、隐私泄露等问题也亟待解决。

本文分析大模型的前世今生,探讨前沿问题,以及未来的发展方向,辅助大众快速了解大模型技术及其发展,融入AI时代的发展洪流。

一、大模型的由来

2022年11月,美国著名AI研究公司OpenAI发布旗下基于大语言模型GPT-3.5的AI聊天机器人程序ChatGPT,其以流畅的语言表达能力、强大的问题处理能力以及庞大的数据库在全世界引发广泛关注。在上线后不足两个月的时间里,ChatGPT的月活突破1亿,成为历史上用户增长速度最快的消费级应用程序。由此,各行各业都感受到了大模型的强大影响。与此同时,国内外大模型的研究热潮也正式掀起。

大模型的由来可以追溯到20世纪的AI研究初期,当时的研究主要集中在逻辑推理和专家系统上。然而,这些方法受限于硬编码的知识和规则,难以处理自然语言的复杂性和多样性。随着机器学习、深度学习技术的出现和硬件能力的飞速提升,大规模数据集和复杂神经网络模型的训练成为可能,从而催生了大模型的时代。

2017年,谷歌推出的Transformer模型结构通过引入自注意力机制(self-attention),极大地提升了序列建模的能力,特别是在处理长距离依赖关系时的效率和准确性方面[3]。此后,预训练语言模型(pre-trained language model, PLM)的理念逐渐成为主流。PLM在大规模文本数据集上进行预训练,捕捉语言的通用模式,然后针对特定任务进行微调来适应特定的下游任务。

大模型入门 | 什么是大模型(一)大模型的由来、大模型的特性、大模型的技术、大模型的应用_agi

OpenAI的GPT系列模型是生成式预训练模型的典范,它们代表了生成式预训练模型的先锋。 从GPT-1到GPT-3.5,每一代模型都在规模、复杂性和性能上有了显著提升。2022年年底,ChatGPT以聊天机器人的身份横空出世,它不仅能够回答问题,还能创作文章、编程,甚至模仿人类的对话风格,其几乎无所不能的回答能力使得人们对大语言模型的通用能力有了全新的认识[4]。这极大地推动了NLP领域的发展。

然而,大模型的发展并不仅限于文本。随着技术的进步,多模态大模型开始崭露头角,它们能够同时理解和生成包括文本、图像、音频等多种类型的数据。 2023年3月,OpenAI官方宣布的多模态大模型GPT-4,新增了图像功能,同时具备更精准的语言理解能力,这标志着大模型从单一模态向多模态的重要转变[5]。这种跨模态数据间的本质差异,对大模型的设计和训练提出了新的、更为复杂的要求,同时也带来了前所未有的挑战。

二、大模型的特性

大模型,通常指的是拥有巨大参数量的机器学习模型,尤其是在NLP、计算机视觉(computer vision,CV)以及多模态领域的应用中。这些模型基于预训练方式,通过NLP理解和学习人类语言,以人机对话方式,完成信息检索、机器翻译、文本摘要、代码编写等内容生成任务。

1、大模型的参数量

大模型的参数量通常超过10亿,这意味着模型内部有超过10亿的可学习权重。这些参数是模型学习和理解数据的基础,它们通过训练不断调整,以更好地映射输入数据到输出结果。参数量的增加直接关联到模型的学习能力和复杂性,使得模型有能力捕捉更加细微和深层的数据特征。

2、大模型的类型

大模型可以根据其应用领域和功能进行分类:

大语言模型:专注于处理和理解自然语言文本,常用于文本生成、情感分析、问答系统等;
视觉大模型:专门用来处理和理解视觉信息(如图像和视频),用于图像识别、视频分析、图像生成等视觉领域的任务;
多模态大模型:能够处理并理解两种或两种以上不同类型的输入数据 (例如文本、图像、音频等) ,通过融合来自不同模态的信息,能够执行比单一模态更为复杂和全面的任务;
基础大模型:通常指那些可以广泛应用于多种不同任务的模型,它们在预训练阶段没有特定的应用方向,而是学习大量通用知识[6]。

3、大模型的能力

大模型的能力在于其能够理解和处理高度复杂的数据模式:

泛化能力:通过在大量数据上进行预训练,大模型学会了语言的普适性规律,在面对新任务时能够展现出强大的泛化能力;
深层次学习:庞大的参数规模和深层次的网络结构使得大模型能够建立起复杂的抽象表示,理解数据背后的深层次语义和关系;
上下文理解:在语言模型中,大模型能够捕捉长距离依赖关系,从而更好地理解上下文,这对于理解语言中的细微差别至关重要;
知识整合:大模型能够整合和利用其在预训练过程中学到的知识,甚至在某些情况下能够展现一定程度的常识推理和问题解决能力;
适应性:尽管大模型在预训练阶段学习的是通用知识,但它们可以通过微调适应特定的任务,显示出极高的灵活性和适应性[7]。

三、大模型的技术

现在的大模型是一种集成了处理多种类型数据能力的机器学习模型**。这些大模型中的基础技术旨在理解和生成跨越不同感官模式的信息**,从而执行诸如图像描述、视觉问答或跨模态翻译等任务。以下是大模型的几个关键基础技术。

1、Transformer架构

现有的大模型大多建立在Transformer模型(或仅仅是Transformer的解码器)基础之上,该架构通过自注意力机制捕捉输入数据的全局依赖关系,并且还能够捕捉不同模态元素间的复杂关系。例如,一个多模态Transformer可以同时处理图像的像素和文本的单词,通过自注意力层来学习它们之间的关联。这使得大模型能够理解文本与图像等各种模态,并生成长文本序列,同时保持上下文的连贯性。

2、有监督微调

有监督微调(supervised fine-tuning, SFT)是一个传统的微调方法,它使用带有标签的数据集来继续训练预训练的大模型。值得注意的是,在大模型的训练中,SFT阶段一般使用的是高质量的数据集。此外,SFT涉及对模型的参数进行调整,以使其在特定任务上表现得更好。例如,如果想要让模型在法律咨询上表现得更好,可以使用一个包含法律问题和专业律师回答的数据集来进行SFT。在SFT中,模型通常会尝试最小化预测输出与真实标签之间的差异,这通常通过损失函数 (如交叉熵损失)来实现。这种方法的优点是直接和简单,可以迅速适应新任务。然而,它也有局限,因****为它依赖于高质量的标注数据,并且可能导致模型在训练数据上过拟合。

3、人类反馈强化学习

人类反馈强化学习(reinforcement learning from human feedback, RLHF)是一种更复杂的训练方法,它结合了监督学习和强化学习的元素。首先在大量未标记的文本上预训练模型,这与SFT之前的步骤相同。然后,人类评估者会与模型互动,或者评估模型的输出,为模型提供关于其表现的反馈,使用人类反馈数据训练一个奖励模型,该模型能够预测人类评价者可能给予的分数。最后,使用奖励模型作为奖励信号,通过强化学习的方法来优化原始模型的参数。这个过程中,模型会尝试最大化它所获得的预期奖励。RLHF的优点在于它可以帮助模型学习更复杂的行为,特别是当任务难以通过简单的正确或错误标签来定义时。此外,RLHF可以帮助模型更好地适应人类的偏好和价值观。

四、大模型的应用

大模型通过其庞大的参数量、深层次的网络结构和广泛的预训练能力,能够捕捉复杂的数据模式,在多个领域中表现出卓越的性能。它们不仅能够理解和生成自然语言,还能够处理复杂的视觉和多模态信息,适应各种多变的应用场景。

大模型入门 | 什么是大模型(一)大模型的由来、大模型的特性、大模型的技术、大模型的应用_agi_02

1、NLP领域

大模型在NLP领域的应用尤为广泛。例如,OpenAI的GPT系列模型能够生成连贯、自然的文本,应用于聊天机器人、自动写作、语言翻译,比较著名的产品如众所周知的ChatGPT。在金融科技领域,大模型常被用于风险评估、交易算法和信用评分等。模型能够分析大量的金融数据,预测市场趋势,帮助金融机构做出更好的投资决策。大模型在法律和合规领域中,可以用于文档审核、合同分析、案例研究等。通过NLP技术,模型能够理解和分析法律文件,提高法律专业人士的工作效率。推荐系统是大模型的又一应用领域。通过将用户的行为数据序列化为文本,大模型可以预测用户的兴趣,并推荐相关的商品、电影、音乐等内容。在游戏领域,大模型可以利用其代码能力生成复杂的游戏环境,可以驱动非玩家控制角色(non-player character, NPC)根据玩家的不同设定产生不同的对话等,以此提供更加逼真的游戏体验。

2、图像理解生成领域

目前的大模型不仅仅只具有对文本的理解能力,其拥有的多模态的理解能力也为其在图像领域的应用打下基础,如自动生成绘画、视频等。这些模型能够模仿艺术家的风格,创作出新的艺术作品,为人类的创造力提供辅助。如OpenAI于2024年2月发布的Sora,可以利用用户输入的文本,直接产生一段符合要求的视频,这为电影制作领域提供了更方便的工具[4]。在图像处理领域,大模型如SegGPT等被用于图像识别、分类和生成等。模型通过学习大量图像数据与文本对,可以识别出图像中的物体、人脸、场景等,并在医学影像分析、自动驾驶车辆、视频监控等方面发挥作用。此外,在医学和生物学领域,多模态的大模型可用于疾病诊断、药物发现、基因编辑等,大模型能够从复杂的生物医学数据中提取有用的信息,辅助医生做出更准确的诊断,或者帮助研究人员设计新的药物。

3、语音识别领域

大模型也在语音识别领域发挥着重要作用。通过深度学习技术,模型能够将语音转换为文本,支持语音助手、实时语音转写、自动字幕生成等应用,手机上的语音助手就是典型例子。这些模型通过对大量语音样本的学习,能够应对不同口音、语调和噪声的干扰。

另外,大模型可以用于教育、医疗、农业、金融等不同行业。例如在教育领域,大模型可用于个性化学习、自动评分、智能辅导等,模型可以根据学生的学习情况提供定制化的教学内容,帮助学生更高效地学习。总而言之,大模型通过其强大的数据处理和学习能力,在各个领域都展现出了巨大的潜力。随着技术的不断进步,可以预见大模型将在未来的发展中扮演更加重要的角色。