态规划算法是通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推的方式去解决。

动态规划的核心点:定义状态与转移方程(最优子结构)
重新定义问题:

算法之动态规划问题_css

一、最长上升子序列(LIS):给定一个序列X,求X长度最大的连续递增的子序列。
例:X=[1,7,2,8,3,5,2],LIS(X)=[1,2,3,5]

算法之动态规划问题_css_02

def LIS(x):
F = [0 for _ in range(len(x))]
p = [-1 for _ in range(len(x))]
# 初始化
F[0] = 1
p[0] = -1
for k in range(1, len(F)):
max_loc = -1
max_num = 0
# 内层循环表示F[0:k]里所有小于x[k]的对应位置的F[i]的最大值
for i in range(0, k):
if x[i] < x[k]:
if F[i] > max_num:
max_loc = i
max_num = F[i]
F[k] = max_num + 1
p[k] = max_loc

max_i = 0
for i in range(1,len(F)):
if F[i] > F[max_i]:
max_i = i

lis = []
i = max_i
while i >= 0:
lis.append(x[i])
i = p[i]
lis.reverse()
return lis

# print(LIS([9,7,2,8,3,5,2]))

 二、最长公共子序列(LCS)问题:给定两个序列X和Y,求X和Y长度最大的公共子序列。

例:X="ABBCBDE" Y="DBBCDB" LCS(X,Y)="BBCD"

动态规划最优子结构:

算法之动态规划问题_编辑距离_03

算法之动态规划问题_编辑距离_04

def LCS(x, y):
F = [[0 for _ in range(len(y)+1)] for _ in range(len(x)+1)]
p = [[0 for _ in range(len(y)+1)] for _ in range(len(x)+1)]
for i in range(1, len(x)+1):
p[i][0] = 2
for j in range(1, len(y)+1):
p[0][j] = 1

# 0 斜向 1 横向 j-1 2竖向 i-1
for i in range(1, len(x)+1):
for j in range(1, len(y)+1):
if x[i-1] == y[j-1]:
F[i][j] = F[i-1][j-1]+1
p[i][j] = 0
else:
#F[i][j] = max(F[i-1][j], F[i][j-1])
if F[i-1][j] > F[i][j-1]:
F[i][j] = F[i-1][j]
p[i][j] = 2
else:
F[i][j] = F[i][j-1]
p[i][j] = 1

lcs = []
i = len(x)
j = len(y)
while i > 0 or j > 0:
if p[i][j] == 0:
lcs.append(x[i-1])
i -= 1
j -= 1
elif p[i][j] == 1:
j -= 1
else:
i -= 1
lcs.reverse()
return lcs
#return F[i][j]

# print(LCS("ABBCBDE", "DBBCDB"))

 

三、最长公共子序列(LCSS)问题:给定两个序列X和Y,求X和Y长度最大的公共子串。

例:X="ABBCBDE" Y="DBBCDB" LCSS(X,Y)="BBC"

暴力搜索求解:O(n3)

动态规划最优子结构:

算法之动态规划问题_子结构_05

def LCSS(x, y):
F = [[0 for _ in range(len(y)+1)] for _ in range(len(x)+1)]
p = [[0 for _ in range(len(y)+1)] for _ in range(len(x)+1)]
# 0 不匹配 1匹配
for i in range(1, len(x)+1):
for j in range(1, len(y)+1):
if x[i-1] == y[j-1]:
F[i][j] = F[i-1][j-1]+1
p[i][j] = 1
else:
F[i][j] = 0
p[i][j] = 0
max_val = 0
max_i = 0
max_j = 0
for i in range(1, len(x)+1):
for j in range(1, len(y)+1):
if F[i][j] > max_val:
max_val = F[i][j]
max_i = i
max_j = j
#tracback
lcss = []
i = max_i
j = max_j
while p[i][j] == 1:
lcss.append(x[i-1])
i -= 1
j -= 1

lcss.reverse()
return lcss

print(LCSS("ABBCBDE", "DBBCDB"))

 

四、编辑距离:指两个字串之间,由一个转成另一个所需的最少编辑操作次数。

允许的编辑操作:替换、插入、删除x="cofe" y="coffee",编辑距离为2(插入2次)

  • x="coffee" y="coffe",编辑距离为(删除1次)
  • x="coffee" y="coffye",编辑距离为(替换2次)
  • x="cofye" y="coffee",编辑距离为2

编辑距离可以用来表示两个字符串的相似度,应用广泛
动态规划最优子结构:

算法之动态规划问题_编辑距离_06

算法之动态规划问题_css_07

斜着过来是替换

从左边来的是插入

从上面来的是删除

算法之动态规划问题_css_08