最近做题,老是遇到了一些公式比如An=An-1+An-2,然后给你一个巨大n的数据,要你求An的值,然后以前做起来,还是比较的顺手的,但是时间抹去了记得的记忆,说明没有学会,于是又花掉一些时间,来回顾以及学习快速矩阵算法。

  其实,每一次我们想到快速矩阵的时候,就可能会产生一个问题? 矩阵该怎么构造,在已经知道了公式的情况下。

不妨以一个我们所收悉的列子:()

 求Fibonacci数列第n项的方法是 构造常系数矩阵

(一)   Fibonacci数列f[n]=f[n-1]+f[n-2],f[1]=f[2]=1的第n项快速求法(不考虑高精度)

解法:

考虑1×2的矩阵|f[n-2],f[n-1]|。根据Fibonacci数列的递推关系,我们可以通过乘以一个2×2的矩阵A,得到矩阵:|f[n-1],f[n]|。

即:|f[n-2],f[n-1]|*A = 【f[n-1],f[n]】=【f[n-1],f[n-1]+f[n-2]】

很容易构造出这个2×2矩阵A,即:

0 1

1 1

所以,有【f[1],f[2]】×A=【f[2],f[3]】

又因为矩阵乘法满足结合律,故有:

【f[1],f[2]】×A ^(n-1) =【f[n],f[n+1]】

这个矩阵的第一个元素f[n]即为所求。


(二)   数列f[n]=f[n-1]+f[n-2]+1,f[1]=f[2]=1的第n项的快速求法(不考虑高精度)

解法:

仿照前例,考虑1×3的矩阵【f[n-2],f[n-1],1】,希望求得某3×3的矩阵A,使得此1×3的矩阵乘以A得到矩阵:【f[n-1],f[n],1】

即:【f[n-2],f[n-1],1】* A =【f[n-1],f[n],1】=【f[n-1],f[n-1]+f[n-2]+1,1】

容易构造出这个3×3的矩阵A,即:

0 1 0

1 1 0

0 1 1

故:【f[1],f[2],1】* A^(n-1) = 【f[n],f[n+1],1】


(三)数列f[n]=f[n-1]+f[n-2]+n+1,f[1]=f[2]=1的第n项的快速求法(不考虑高精度).

解法:

仿照前例,考虑1×4的矩阵【f[n-2],f[n-1],n,1】,希望求得某4×4的矩阵A,使得此1×4的矩阵乘以A得到矩阵:【f[n-1],f[n],n+1,1】

即:【f[n-2],f[n-1],n,1】* A  = 【f[n-1],f[n],n+1,1】=【f[n-1],f[n-1]+f[n-2]+n+1,n+1,1】

容易构造出这个4×4的矩阵A,即:

0 1 0 0

1 1 0 0

0 1 1 0

0 1 1 1

故:【f[1],f[2],3,1】* A^(n-1) = 【f[n],f[n+1],n+2,1】



(四)   数列f[n]=f[n-1]+f[n-2],f[1]=f[2]=1的前n项和s[n]=f[1]+f[2]+……+f[n]的快速求法(不考虑高精度).

解法:

仿照之前的思路,考虑1×3的矩阵【f[n-2],f[n-1],s[n-2]】,我们希望通过乘以一个3×3的矩阵A,得到1×3的矩阵:【f[n-1],f[n],s[n-1]】

即:【f[n-2],f[n-1],s[n-2]】 * A  = 【f[n-1],f[n],s[n-1]】=【f[n-1],f[n-1]+f[n-2],s[n-2]+f[n-1]】

容易得到这个3×3的矩阵A是:

0 1 0

1 1 1

0 0 1

这种方法的矩阵规模是(r+1)*(r+1)

f(1)=f(2)=s(1)=1 ,所以,有

【f(1),f(2),s(1)】* A  = 【f(2),f(3),s(2)】

故:【f(1),f(2),s(1)】* A^(n-1)  = 【f(n),f(n+1),s(n)】


(五)   数列f[n]=f[n-1]+f[n-2]+n+1,f[1]=f[2]=1的前n项和s[n]=f[1]+f[2]+……+f[n]的快速求法(不考虑高精度).

解法:

考虑1×5的矩阵【f[n-2],f[n-1],s[n-2],n,1】,

我们需要找到一个5×5的矩阵A,使得它乘以A得到如下1×5的矩阵【f[n-1],f[n],s[n-1],n+1,1】

即:【f[n-2],f[n-1],s[n-2],n,1】* A  =【f[n-1],f[n],s[n-1],n+1,1】

=【f[n-1], f[n-1]+f[n-2]+n+1,s[n-2]+f[n-1],n+1,1】

容易构造出A为:

0 1 0 0 0

1 1 1 0 0

0 0 1 0 0

0 1 0 1 0

0 1 0 1 1

故:【f(1),f(2),s(1),3,1】* A^(n-1)  = 【f(n),f(n+1),s(n),n+2,1】


一般地,如果有f[n]=p*f[n-1]+q*f[n-2]+r*n+s

可以构造矩阵A为:

0  q  0  0  0

1  p  1  0  0

0  0  1  0  0

0  r  0  1  0

0  s  0  1  1


更一般的,对于f[n]=Sigma(a[n-i]*f[n-i])+Poly(n),其中0<i<=某常数c, Poly (n)表示n的多项式,我们依然可以构造类似的矩阵A来解决问题。

设Degree(Poly(n))=d, 并规定Poly(n)=0时,d=-1,此时对应于常系数线性齐次递推关系。则本方法求前n项和的复杂度为:

((c+1)+(d+1))3*logns


例如:A(0) = 1 , A(1) = 1 , A(N) = X * A(N - 1) + Y * A(N - 2) (N >= 2);给定三个值N,X,Y求S(N):S(N) = A(0)2 +A(1)2+……+A(n)2。

解:

考虑1*4 的矩阵【s[n-2],a[n-1]^2,a[n-2]^2,a[n-1]*a[n-2]】

我们需要找到一个4×4的矩阵A,使得它乘以A得到1×4的矩阵

【s[n-1],a[n]^2,a[n-1]^2,a[n]*a[n-1]】

即:【s[n-2],a[n-1]^2,a[n-2]^2,a[n-1]*a[n-2]】* A = 【s[n-1],a[n]^2,a[n-1]^2,a[n]*a[n-1]】

= 【s[n-2]+a[n-1]^2 , x^2 * a[n-1]^2 + y^2 * a[n-2]^2 + 2*x*y*a[n-1]*a[n-2] ,

a[n-1]^2 , x*a[n-1]^2 + y*a[n-2]a[n-1]】

可以构造矩阵A为:

1     0    0    0

1    x^2   1    x

0    y^2   0    0

0    2xy   0    y

故:【S[0],a[1]^2,a[0]^2,a[1]*a[0]】 * A^(n-1) = 【s[n-1],a[n]^2,a[n-1]^2,a[n]*a[n-1]】

所以:【S[0],a[1]^2,a[0]^2,a[1]*a[0]】 * A^(n) = 【s[n],a[n+1]^2,a[n]^2,a[n+1]*a[n]】

若A = (B * C ) 则A​T​ = ( B * C )​T​ = C​T ​* B​T

齐次方程到矩阵(番外篇)_ACM



编程是一种快乐,享受代码带给我的乐趣!!!