上一阶段公号更新了 OpenCV 的一些小案例,在接下来的一段时间里公号的更文计划向 Pandas、Numpy、Matplotlib  关于数据处理、可视化的方向侧重;偶尔会加入几篇 Python 自动化办公相关文章,小伙伴们关于推文方向有什么建议的话可以发在下方评论里,也可以在后台私信我。

对于 Pandas, 接触过 Python 数据处理的小伙伴们都应该挺熟悉的,做数据处理不可或缺的一个程序包,最大的特点高效,本篇文章将通过案例介绍一下 Pandas 的一些基础使用!

1,读入数据

大部分数据都可以用 read_csv() 函数读入,函数中有个 sep 参数,表示数据的分隔符,默认为 “,” (因为大部分 csv 文件数据之间就是以 ,隔开的)

users = pd.read_csv("https://raw.githubusercontent.com/justmarkham/DAT8/master/data/u.user",
sep = '|')# Read data;
users

原始数据:

Pandas 数据处理(一) ——  几个简单函数掌握!_聚类

读取之后的数据:

Pandas 数据处理(一) ——  几个简单函数掌握!_数据_02

除了 read_csv 之外,还有一个常用的 read_table函数也可进行读取操作,用法与 read_csv 相似

2,改变索引值,只展示前几行数据

set_index() 函数用来改变索引值,注意需要加一个参数 replace = True 表示替代;利用 head(n) 函数表示只展示前 n 行数据

users.set_index('user_id',inplace = True)
users.head(25)

Pandas 数据处理(一) ——  几个简单函数掌握!_聚类_03

tail(n) 只展示后几行数据;

3,查看数据的行和列的基本信息

1,shape 返回 数据的行数和列数,以 tuple 形式返回;

users.shape

# (943, 4)

2,columns 返回数据列名;

users.columns

# Index(['age', 'gender', 'occupation', 'zip_code'], dtype='object')

3,index 返回行名;

users.index

Int64Index([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
...
934, 935, 936, 937, 938, 939, 940, 941, 942, 943],
dtype='int64', name='user_id', length=943)

4,dtypes 返回各列的数据类型;

users.dtypes


# age int64
gender object
occupation object
zip_code object
dtype: object

4,只选取某列或多列数据

Pandas 提供多种方式可供选择,注:users 表示 Pandas 可处理的DataFrame 格式;

1,users.列名;

users.occupation

2,users[['列名']];

users[['occupation']]

3,users.loc[:,['列名']];

users.loc[:,['occupation']]

Pandas 数据处理(一) ——  几个简单函数掌握!_聚类_04

同时选取多列数据时

1,users[['列名1','列名2']];

users[['occupation','age']]

2,users.loc[:,['列名1','列名2']];

users.loc[:,['occupation','age']]

Pandas 数据处理(一) ——  几个简单函数掌握!_python_05

5,对列中数据做去重统计

1,列名.nunique() 查看某一列数据有多少个不重复样本;

users.occupation.nunique()


# 21

也可以通过这种方式实现

列名.value_counts().count()

users.occupation.value_counts().count()


# 21

如果想在1 的基础之上,查看每一个不重复样本在数据列表中出现了几次,可用下面语句

users.列名.value_counts()

users.occupation.value_counts().head()


# student 196
other 105
educator 95
administrator 79
engineer 67
Name: occupation, dtype: int64

6,对数据列表中的数字列做个简单统计

users.describe() 即可实现,默认统计的是 numeric columns(列中数据都是以数值进行展示的)

users.describe()

Pandas 数据处理(一) ——  几个简单函数掌握!_数据_06

当然也可以统计全部列,加一个参数 include = 'all';

users.describe(include = 'all')

Pandas 数据处理(一) ——  几个简单函数掌握!_数据_07

users.列名.describe() 也可以对指定列进行统计:

users.occupation.describe()

#count 943
unique 21
top student
freq 196
Name: occupation, dtype: object

7,对数据做组聚类

groupby 函数对某一列做聚类操作,返回的是 GroupBy 对象;与 5 中方法相似,区别是 groupby 是以聚类后的列为参照,查看其他列的数据统计情况

c =users.groupby("occupation")
c

# <pandas.core.groupby.generic.DataFrameGroupBy object at 0x0000017673002788>

GroupBy.head(n) 查看前 n 行数据

c.head(5)

GroupBy.cout() 对每个样本对应其他列进行数据统计

c.count()

GroupBy.size() 统计列中每个样本出现次数

c.size()

还有其它许可操作的函数,

Pandas 数据处理(一) ——  几个简单函数掌握!_python_08

详细的可去官网上查询:https://pandas.pydata.org/docs/reference/groupby.html

8,对数据按照某一列进行排序

用到 data.sort_values() 函数,默认从小到大,可以设置 ascending = False 设置为从大到小;

users.sort_values(["age"],ascending = False)

也可以参考多个列进行排序:

users.sort_values(["age","zip_code"],ascending = False)

Pandas 数据处理(一) ——  几个简单函数掌握!_数据_09double_columns_sort.png

9,创建新的列

加入新的列比较简单,创建一个 Series (行数需与原列表数据行数保持一致),赋值到源数据即可

data['列名'] =  新创建的 series;下面我利用对 age 中数据进行均一化,把数据存放在新的列 age_normalize 中

Pandas 数据处理(一) ——  几个简单函数掌握!_聚类_10

10,删除指定列

用 drop()  函数可删除源数据中的指定列

users.drop(['age'],axis = 1)

这里的 axis 代表指定要删除的是行还是列,默认为0,0代表的是行,1代表的是列;也可以直接用下面命令:

users.drop(columns =['age'])

Pandas 数据处理(一) ——  几个简单函数掌握!_聚类_11drop_columns.png