核心线程 (N为CPU数量)

CPU密集型:核心线程数=CPU核心数(CPU核心数+1)
I/O密集型:核心线程数=2*CPU核心数(CPU核心数/(1-阻塞系数))
混合型:核心线程数=(线程等待时间/线程CPU时间+1)*CPU核心数

最大线程 (N为CPU数量)

CPU密集型:最大线程设置为 N+1
I/O密集型:最大线程设置为 2N+1 (N为CPU数量)

详解

CPU密集型

这种任务消耗的主要是 CPU 资源,可以将线程数设置为 N(CPU 核心数)+1,比 CPU 核心数多出来的一个线程是为了防止线程偶发的缺页中断,或者其它原因导致的任务暂停而带来的影响。

一旦任务暂停,CPU 就会处于空闲状态,而在这种情况下多出来的一个线程就可以充分利用 CPU 的空闲时间。

当线程数量太小,同一时间大量请求将被阻塞在线程队列中排队等待执行线程,此时 CPU 没有得到充分利用;当线程数量太大,被创建的执行线程同时在争取 CPU 资源,又会导致大量的上下文切换,从而增加线程的执行时间,影响了整体执行效率。通过测试可知,4~6 个线程数是最合适的。

I/O密集型

这种任务应用起来,系统会用大部分的时间来处理 I/O 交互,而线程在处理 I/O 的时间段内不会占用 CPU 来处理,这时就可以将 CPU 交出给其它线程使用。因此在 I/O 密集型任务的应用中,我们可以多配置一些线程,具体的计算方法是 2N。

备注:涉及到大内存,所以在运行之前,我们需要调整 JVM 的堆内存空间:-Xms4g -Xmx4g,避免发生频繁的 FullGC,影响测试结果。

其他类型,用通用公式

线程数=N*(1+WT)/ST
N:CPU核数
WT:线程等待时间
ST:线程运行时间

综合来看,我们可以根据自己的业务场景,从“N+1”和“2N”两个公式中选出一个适合的,计算出一个大概的线程数量,之后通过实际压测,逐渐往“增大线程数量”和“减小线程数量”这两个方向调整,然后观察整体的处理时间变化,最终确定一个具体的线程数量。