普通索引和唯一索引,应该怎么选择?
查询过程
你知道的,InnoDB 的数据是按数据页为单位来读写的。也就是说,当需要读一条记录的时候,并不是将这个记录本身从磁盘读出来,而是以页为单位,将其整体读入内存。在 InnoDB 中,每个数据页的大小默认是 16KB。
更新过程
当需要更新一个数据页时,如果数据页在内存中就直接更新,而如果这个数据页还没有在内存中的话,在不影响数据一致性的前提下,InooDB 会将这些更新操作缓存在 change buffer 中,这样就不需要从磁盘中读入这个数据页了。在下次查询需要访问这个数据页的时候,将数据页读入内存,然后执行 change buffer 中与这个页有关的操作。通过这种方式就能保证这个数据逻辑的正确性。
需要说明的是,虽然名字叫作 change buffer,实际上它是可以持久化的数据。也就是说,change buffer 在内存中有拷贝,也会被写入到磁盘上。
将 change buffer 中的操作应用到原数据页,得到最新结果的过程称为 merge。除了访问这个数据页会触发 merge 外,系统有后台线程会定期 merge。在数据库正常关闭(shutdown)的过程中,也会执行 merge 操作。
显然,如果能够将更新操作先记录在 change buffer,减少读磁盘,语句的执行速度会得到明显的提升。
对于唯一索引来说,所有的更新操作都要先判断这个操作是否违反唯一性约束。
因此,唯一索引的更新就不能使用 change buffer,实际上也只有普通索引可以使用。
change buffer 用的是 buffer pool 里的内存,因此不能无限增大。change buffer 的大小,可以通过参数 innodbchangebuffermaxsize 来动态设置。这个参数设置为 50 的时候,表示 change buffer 的大小最多只能占用 buffer pool 的 50%。
如果要在这张表中插入一个新记录 (4,400) 的话,InnoDB 的处理流程是怎样的。
第一种情况是,这个记录要更新的目标页在内存中。这时,InnoDB 的处理流程如下:
- 对于唯一索引来说,找到 3 和 5 之间的位置,判断到没有冲突,插入这个值,语句执行结束;
- 对于普通索引来说,找到 3 和 5 之间的位置,插入这个值,语句执行结束。
这样看来,普通索引和唯一索引对更新语句性能影响的差别,只是一个判断,只会耗费微小的 CPU 时间。
第二种情况是,这个记录要更新的目标页不在内存中。这时,InnoDB 的处理流程如下:
- 对于唯一索引来说,需要将数据页读入内存,判断到没有冲突,插入这个值,语句执行结束;
- 对于普通索引来说,则是将更新记录在 change buffer,语句执行就结束了。
Change Buffer的使用场景
普通索引的所有场景,使用 change buffer 都可以起到加速作用吗?
因为 merge 的时候是真正进行数据更新的时刻,而 change buffer 的主要目的就是将记录的变更动作缓存下来,所以在一个数据页做 merge 之前,change buffer 记录的变更越多(也就是这个页面上要更新的次数越多),收益就越大。
因此,对于写多读少的业务来说,页面在写完以后马上被访问到的概率比较小,此时 change buffer 的使用效果最好。这种业务模型常见的就是账单类、日志类的系统。
反过来,假设一个业务的更新模式是写入之后马上会做查询,那么即使满足了条件,将更新先记录在 change buffer,但之后由于马上要访问这个数据页,会立即触发 merge 过程。这样随机访问 IO 的次数不会减少,反而增加了 change buffer 的维护代价。所以,对于这种业务模式来说,change buffer 反而起到了副作用。
merge 的执行流程是这样的:
- 从磁盘读入数据页到内存(老版本的数据页);
- 从 change buffer 里找出这个数据页的 change buffer 记录 (可能有多个),依次应用,得到新版数据页;
- 写 redo log。这个 redo log 包含了数据的变更和 change buffer 的变更。
到这里 merge 过程就结束了。这时候,数据页和内存中 change buffer 对应的磁盘位置都还没有修改,属于脏页,之后各自刷回自己的物理数据,就是另外一个过程了。
索引的选择和实践
普通索引和唯一索引应该怎么选择。其实,这两类索引在查询能力上是没差别的,主要考虑的是对更新性能的影响。所以,我建议你尽量选择普通索引。
如果所有的更新后面,都马上伴随着对这个记录的查询,那么你应该关闭 change buffer。而在其他情况下,change buffer 都能提升更新性能。
在实际使用中,你会发现,普通索引和 change buffer 的配合使用,对于数据量大的表的更新优化还是很明显的。
现在,我们要在表上执行这个插入语句:
这里,我们假设当前 k 索引树的状态,查找到位置后,k1 所在的数据页在内存 (InnoDB buffer pool) 中,k2 所在的数据页不在内存中。
分析这条更新语句,你会发现它涉及了四个部分:内存、redo log(iblogfileX)、 数据表空间(t.ibd)、系统表空间(ibdata1)。
这条更新语句做了如下的操作(按照图中的数字顺序):
- 1 Page 1 在内存中,直接更新内存;
- 2 Page 2 没有在内存中,就在内存的 change buffer 区域,记录下“我要往 Page 2 插入一行”这个信息
- 3 将上述两个动作记入 redo log 中(图中 3 和 4)。
做完上面这些,事务就可以完成了。
比如,我们现在要执行 select * from t where k in (k1, k2)。
如果读语句发生在更新语句后不久,内存中的数据都还在,那么此时的这两个读操作就与系统表空间(ibdata1)和 redo log(iblogfileX)无关了。
- 1 读 Page 1 的时候,直接从内存返回。你可以看一下图 3 的这个状态,虽然磁盘上还是之前的数据,但是这里直接从内存返回结果,结果是正确的。
- 2 要读 Page 2 的时候,需要把 Page 2 从磁盘读入内存中,然后应用 change buffer 里面的操作日志,生成一个正确的版本并返回结果。
可以看到,直到需要读 Page 2 的时候,这个数据页才会被读入内存。
最后,又到了思考题时间。change buffer 一开始是写内存的,那么如果这个时候机器掉电重启,会不会导致 change buffer 丢失呢?
虽然是只更新内存,但是在事务提交的时候,我们把 change buffer 的操作也记录到 redo log 里了,所以崩溃恢复的时候,change buffer 也能找回来。
MySQL为什么有时候会选错索引?
优化器的逻辑
选择索引是优化器的工作。
扫描行数是怎么判断的?
MySQL 在真正开始执行语句之前,并不能精确地知道满足这个条件的记录有多少条,而只能根据统计信息来估算记录数。
这个统计信息就是索引的“区分度”。显然,一个索引上不同的值越多,这个索引的区分度就越好。而一个索引上不同的值的个数,我们称之为“基数”(cardinality)。也就是说,这个基数越大,索引的区分度越好。
MySQL 是怎样得到索引的基数的呢?这里,我给你简单介绍一下 MySQL 采样统计的方法。
为什么要采样统计呢?因为把整张表取出来一行行统计,虽然可以得到精确的结果,但是代价太高了,所以只能选择“采样统计”。
采样统计的时候,InnoDB 默认会选择 N 个数据页,统计这些页面上的不同值,得到一个平均值,然后乘以这个索引的页面数,就得到了这个索引的基数。
由于是采样统计,所以不管 N 是 20 还是 8,这个基数都是很容易不准的。
rows 这个字段表示的是预计扫描行数。
优化器认为直接扫描主键索引更快。
索引选择异常和处理
如果 force index 指定的索引在候选索引列表中,就直接选择这个索引,不再评估其他索引的执行代价。
怎么给字符串字段加索引?
- 直接创建完整索引,这样可能比较占用空间;
- 创建前缀索引,节省空间,但会增加查询扫描次数,并且不能使用覆盖索引;
- 倒序存储,再创建前缀索引,用于绕过字符串本身前缀的区分度不够的问题;
- 创建 hash 字段索引,查询性能稳定,有额外的存储和计算消耗,跟第三种方式一样,都不支持范围扫描。
为什么我的MySQL会“抖”一下
当内存数据页跟磁盘数据页内容不一致的时候,我们称这个内存页为“脏页”。内存数据写入到磁盘后,内存和磁盘上的数据页的内容就一致了,称为“干净页”。
不论是脏页还是干净页,都在内存中。假设原来孔乙己欠账 10 文,这次又要赊 9 文。
回到文章开头的问题,你不难想象,平时执行很快的更新操作,其实就是在写内存和日志,而 MySQL 偶尔“抖”一下的那个瞬间,可能就是在刷脏页(flush)。
那么,什么情况会引发数据库的 flush 过程呢?
第一种场景是,InnoDB 的 redo log 写满了。这时候系统会停止所有更新操作,把 checkpoint 往前推进,redo log 留出空间可以继续写。
比如图 2 中,把 checkpoint 位置从 CP 推进到 CP’,就需要将两个点之间的日志(浅绿色部分),对应的所有脏页都 flush 到磁盘上。之后,图中从 write pos 到 CP’之间就是可以再写入的 redo log 的区域。
第二种场景是,对应的就是系统内存不足。当需要新的内存页,而内存不够用的时候,就要淘汰一些数据页,空出内存给别的数据页使用。如果淘汰的是“脏页”,就要先将脏页写到磁盘。
第三种场景是,对应的就是 MySQL 认为系统“空闲”的时候。
第四种场景是,对应的就是 MySQL 正常关闭的情况。
其中,第三种情况是属于 MySQL 空闲时的操作,这时系统没什么压力,而第四种场景是数据库本来就要关闭了。
第一种是“redo log 写满了,要 flush 脏页”,这种情况是 InnoDB 要尽量避免的。因为出现这种情况的时候,整个系统就不能再接受更新了,所有的更新都必须堵住。如果你从监控上看,这时候更新数会跌为 0。
第二种是“内存不够用了,要先将脏页写到磁盘”,这种情况其实是常态。InnoDB 用缓冲池(buffer pool)管理内存,缓冲池中的内存页有三种状态:
- 第一种是,还没有使用的;
- 第二种是,使用了并且是干净页;
- 第三种是,使用了并且是脏页。
InnoDB 的策略是尽量使用内存,而当要读入的数据页没有在内存的时候,就必须到缓冲池中申请一个数据页。这时候只能把最久不使用的数据页从内存中淘汰掉:如果要淘汰的是一个干净页,就直接释放出来复用;但如果是脏页呢,就必须将脏页先刷到磁盘,变成干净页后才能复用。
所以,刷脏页虽然是常态,但是出现以下这两种情况,都是会明显影响性能的:
- 一个查询要淘汰的脏页个数太多,会导致查询的响应时间明显变长;
- 日志写满,更新全部堵住,写性能跌为 0,这种情况对敏感业务来说,是不能接受的。
所以,InnoDB 需要有控制脏页比例的机制,来尽量避免上面的这两种情况。
InnoDB 刷脏页的控制策略
InnoDB 的刷盘速度就是要参考这两个因素:一个是脏页比例,一个是 redo log 写盘速度。
一旦一个查询请求需要在执行过程中先 flush 掉一个脏页时,这个查询就可能要比平时慢了。而 MySQL 中的一个机制,可能让你的查询会更慢:在准备刷一个脏页的时候,如果这个数据页旁边的数据页刚好是脏页,就会把这个“邻居”也带着一起刷掉;而且这个把“邻居”拖下水的逻辑还可以继续蔓延,也就是对于每个邻居数据页,如果跟它相邻的数据页也还是脏页的话,也会被放到一起刷。
在 InnoDB 中,innodbflushneighbors 参数就是用来控制这个行为的,值为 1 的时候会有上述的“连坐”机制,值为 0 时表示不找邻居,自己刷自己的。
在 MySQL 8.0 中,innodbflushneighbors 参数的默认值已经是 0 了。
为什么表数据删掉一般,表文件大小不变?
一个 InnoDB 表包含两部分,即:表结构定义和数据。在 MySQL 8.0 版本以前,表结构是存在以.frm 为后缀的文件里。而 MySQL 8.0 版本,则已经允许把表结构定义放在系统数据表中了。
参数 innodbfileper_table
表数据既可以存在共享表空间里,也可以是单独的文件。这个行为是由参数 innodbfileper_table 控制的:
- 这个参数设置为 OFF 表示的是,表的数据放在系统共享表空间,也就是跟数据字典放在一起;
- 这个参数设置为 ON 表示的是,每个 InnoDB 表数据存储在一个以 .ibd 为后缀的文件中。
从 MySQL 5.6.6 版本开始,它的默认值就是 ON 了。
我建议你不论使用 MySQL 的哪个版本,都将这个值设置为 ON。因为,一个表单独存储为一个文件更容易管理,而且在你不需要这个表的时候,通过 drop table 命令,系统就会直接删除这个文件。而如果是放在共享表空间中,即使表删掉了,空间也是不会回收的。
我们在删除整个表的时候,可以使用 drop table 命令回收表空间。但是,我们遇到的更多的删除数据的场景是删除某些行,这时就遇到了我们文章开头的问题:表中的数据被删除了,但是表空间却没有被回收。
数据删除流程
假设,我们要删掉 R4 这个记录,InnoDB 引擎只会把 R4 这个记录标记为删除。如果之后要再插入一个 ID 在 300 和 600 之间的记录时,可能会复用这个位置。但是,磁盘文件的大小并不会缩小。
现在,你已经知道了 InnoDB 的数据是按页存储的,那么如果我们删掉了一个数据页上的所有记录,会怎么样?
答案是,整个数据页就可以被复用了。
但是,数据页的复用跟记录的复用是不同的。
记录的复用,只限于符合范围条件的数据。比如上面的这个例子,R4 这条记录被删除后,如果插入一个 ID 是 400 的行,可以直接复用这个空间。但如果插入的是一个 ID 是 800 的行,就不能复用这个位置了。
而当整个页从 B+ 树里面摘掉以后,可以复用到任何位置。以图 1 为例,如果将数据页 page A 上的所有记录删除以后,page A 会被标记为可复用。这时候如果要插入一条 ID=50 的记录需要使用新页的时候,page A 是可以被复用的。
进一步地,如果我们用 delete 命令把整个表的数据删除呢?结果就是,所有的数据页都会被标记为可复用。但是磁盘上,文件不会变小。
你现在知道了,delete 命令其实只是把记录的位置,或者数据页标记为了“可复用”,但磁盘文件的大小是不会变的。也就是说,通过 delete 命令是不能回收表空间的。这些可以复用,而没有被使用的空间,看起来就像是“空洞”。
实际上,不止是删除数据会造成空洞,插入数据也会。
如果数据是按照索引递增顺序插入的,那么索引是紧凑的。但如果数据是随机插入的,就可能造成索引的数据页分裂。
假设图 1 中 page A 已经满了,这时我要再插入一行数据,会怎样呢?
可以看到,由于 page A 满了,再插入一个 ID 是 550 的数据时,就不得不再申请一个新的页面 page B 来保存数据了。页分裂完成后,page A 的末尾就留下了空洞(注意:实际上,可能不止 1 个记录的位置是空洞)。
另外,更新索引上的值,可以理解为删除一个旧的值,再插入一个新值。不难理解,这也是会造成空洞的。
显然,花时间最多的步骤是往临时表插入数据的过程,如果在这个过程中,有新的数据要写入到表 A 的话,就会造成数据丢失。因此,在整个 DDL 过程中,表 A 中不能有更新。也就是说,这个 DDL 不是 Online 的。
而在MySQL 5.6 版本开始引入的 Online DDL,对这个操作流程做了优化。
我给你简单描述一下引入了 Online DDL 之后,重建表的流程:
- 建立一个临时文件,扫描表 A 主键的所有数据页;
- 用数据页中表 A 的记录生成 B+ 树,存储到临时文件中;
- 生成临时文件的过程中,将所有对 A 的操作记录在一个日志文件(row log)中,对应的是图中 state2 的状态;
- 临时文件生成后,将日志文件中的操作应用到临时文件,得到一个逻辑数据上与表 A 相同的数据文件,对应的就是图中 state3 的状态;
- 用临时文件替换表 A 的数据文件。
可以看到,与图 3 过程的不同之处在于,由于日志文件记录和重放操作这个功能的存在,这个方案在重建表的过程中,允许对表 A 做增删改操作。
而对于一个大表来说,Online DDL 最耗时的过程就是拷贝数据到临时表的过程,这个步骤的执行期间可以接受增删改操作。所以,相对于整个 DDL 过程来说,锁的时间非常短。对业务来说,就可以认为是 Online 的。
Online 和 inplace
说到 Online,我还要再和你澄清一下它和另一个跟 DDL 有关的、容易混淆的概念 inplace 的区别。
你可能注意到了,在图 3 中,我们把表 A 中的数据导出来的存放位置叫作 tmp_table。这是一个临时表,是在 server 层创建的。
在图 4 中,根据表 A 重建出来的数据是放在“tmp_file”里的,这个临时文件是 InnoDB 在内部创建出来的。整个 DDL 过程都在 InnoDB 内部完成。对于 server 层来说,没有把数据挪动到临时表,是一个“原地”操作。
- DDL 过程如果是 Online 的,就一定是 inplace 的;
- 反过来未必,也就是说 inplace 的 DDL,有可能不是 Online 的。截止到 MySQL 8.0,添加全文索引(FULLTEXT index)和空间索引 (SPATIAL index) 就属于这种情况。
一个表 t 文件大小为 1TB;
对这个表执行 alter table t engine=InnoDB;
发现执行完成后,空间不仅没变小,还稍微大了一点儿,比如变成了 1.01TB。
你觉得可能是什么原因呢 ?
答:在重建表的时候,InnoDB 不会把整张表占满,每个页留了 1/16 给后续的更新用。也就是说,其实重建表之后不是“最”紧凑的。
count(*) 这么慢,我该怎么办?
count(*) 的实现方式
你首先要明确的是,在不同的 MySQL 引擎中,count(*) 有不同的实现方式。
- MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行 count(*) 的时候会直接返回这个数,效率很高;
- 而 InnoDB 引擎就麻烦了,它执行 count(*) 的时候,需要把数据一行一行地从引擎里面读出来,然后累积计数。
InnoDB 是索引组织表,主键索引树的叶子节点是数据,而普通索引树的叶子节点是主键值。所以,普通索引树比主键索引树小很多。对于 count(*) 这样的操作,遍历哪个索引树得到的结果逻辑上都是一样的。因此,MySQL 优化器会找到最小的那棵树来遍历。在保证逻辑正确的前提下,尽量减少扫描的数据量,是数据库系统设计的通用法则之一。
到这里我们小结一下:
- MyISAM 表虽然 count(*) 很快,但是不支持事务;
- show table status 命令虽然返回很快,但是不准确;
- InnoDB 表直接 count(*) 会遍历全表,虽然结果准确,但会导致性能问题。
不同的 count 用法
对于 count(主键 id) 来说,InnoDB 引擎会遍历整张表,把每一行的 id 值都取出来,返回给 server 层。server 层拿到 id 后,判断是不可能为空的,就按行累加。
对于 count(1) 来说,InnoDB 引擎遍历整张表,但不取值。server 层对于返回的每一行,放一个数字“1”进去,判断是不可能为空的,按行累加。
单看这两个用法的差别的话,你能对比出来,count(1) 执行得要比 count(主键 id) 快。
对于 count(字段) 来说:
- 如果这个“字段”是定义为 not null 的话,一行行地从记录里面读出这个字段,判断不能为 null,按行累加;
- 如果这个“字段”定义允许为 null,那么执行的时候,判断到有可能是 null,还要把值取出来再判断一下,不是 null 才累加。
但是 count() 是例外,并不会把全部字段取出来,而是专门做了优化,不取值。count() 肯定不是 null,按行累加。
所以结论是:按照效率排序的话,count(字段)<count(主键 id)<count(1)≈count(),所以我建议你,尽量使用 count()。