分析:直接暴力算有30分,像斐波那契那样推式子算有60分,如果想要得到100分就要用一种数列题的常见优化--矩阵了.
当前的兔子数和十年内的兔子数有关,我们需要1个1*11的矩阵,来记录当前为0岁、1岁、2岁......兔子的数量,同时还需要一个快速幂矩阵进行计算.由于一年后a[1] = a[0],a[2] = a[1],......,a[10] = a[9],a[0] = a[1] + a[2] + a[3] + ...... + a[10],很容易构造出矩阵来.
因为矩阵比较复杂,还是推荐用结构体来写.
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; const int mod = 1000000007; int t; long long print,sum; struct node { int n, m; long long a[20][20]; node() { memset(a, 0, sizeof(a)); n = 0; m = 0; } }s,p,ans; node mul(node a, node b) { node c; c.n = a.n; c.m = b.m; for (int i = 0; i < a.n; i++) for (int j = 0; j < b.m; j++) for (int k = 0; k < a.m; k++) { c.a[i][j] += (a.a[i][k] * b.a[k][j]) % mod; c.a[i][j] %= mod; } return c; } node qpow(node a, int b) { node t; t.n = 11; t.m = 11; for (int i = 0; i < 11; i++) t.a[i][i] = 1; while (b) { if (b & 1) t = mul(t, a); a = mul(a, a); b >>= 1; } return t; } int main() { scanf("%d", &t); s.n = 1; s.m = 11; s.a[0][1] = 1; p.n = 11; p.m = 11; for (int i = 1; i <= 9; i++) { p.a[i][0] = 1; p.a[i - 1][i] = 1; } p.a[10][0] = 1; ans = mul(s, qpow(p, t - 1)); for (int i = 0; i <= 10; i++) sum = (sum + ans.a[0][i]) % mod; printf("%lld\n", sum); return 0; }