def tearDown(self):
    print("custom tearDown")
    # exec teardown script
    self.exec_other_script("teardown.air")
    super(CustomAirtestCase, self).setUp()
if name == ‘main’:
 ap = runner_parser()
 args = ap.parse_args()
 run_script(args, CustomAirtestCase)
然后,在IDE的设置中配置启动器


菜单-“选项”-“设置”-“Airtest”,点击“自定义启动器”可打开文件选择窗口,选择自定义的launcher.py文件即可。  
 点击“编辑”,可对launcher.py文件的内容进行编辑,点击“确定”按钮让新配置生效。


也可以用命令行启动
python custom_launcher.py test.air --device Android:///serial_num --log log_path
看到这里都没有提供一次运行多条脚本方法,但是有提供调用其他脚本的接口,相信聪明的你应该有些想法了,这个后面再讲,因为官方文档里都说了IDE确实没有提供批量执行脚本的功能呢


我们在脚本编写完成后,AirtestIDE可以让我们一次运行单个脚本验证结果,但是假如我们需要在多台手机上,同时运行多个脚本,完成自动化测试的批量执行工作时,AirtestIDE就无法满足我们的需求了。  
 目前可以通过命令行运行手机的方式来实现批量多机运行脚本,例如在Windows系统中,最简单的方式是直接编写多个bat脚本来启动命令行运行Airtest脚本。如果大家感兴趣的话,也可以自行实现任务调度、多线程运行的方案来运行脚本。请注意,若想同时运行多个脚本,请尽量在本地Python环境下运行,避免使用AirtestIDE来运行脚本。


划重点!划重点!划重点!源码分析来啦 ,以上都是“拾人牙慧”的搬运教程,下面才是“精华”,我们开始看看源码。


从这个命令行启动的方式可以看出,这是用python运行了custom\_launcher.py文件,给传入的参数是‘test.air’、‘device’、‘log’,那我们回去看一下custom\_launcher.py的入口。
if name == ‘main’:
 ap = runner_parser()
 args = ap.parse_args()
 run_script(args, CustomAirtestCase)runner\_parser()接口是用ArgumentParser添加参数的定义def runner_parser(ap=None):
 if not ap:
 ap = argparse.ArgumentParser()
 ap.add_argument(“script”, help=“air path”)
 ap.add_argument(“–device”, help=“connect dev by uri string, e.g. Android:///”, nargs=“?”, action=“append”)
 ap.add_argument(“–log”, help=“set log dir, default to be script dir”, nargs=“?”, const=True)
 ap.add_argument(“–recording”, help=“record screen when running”, nargs=“?”, const=True)
 return ap然后用argparse库解析出命令行传入的参数
然后用argparse库解析出命令行传入的参数

=====================================

Command line argument parsing methods

=====================================

def parse_args(self, args=None, namespace=None):
 args, argv = self.parse_known_args(args, namespace)
 if argv:
 msg = _(‘unrecognized arguments: %s’)
 self.error(msg % ’ '.join(argv))
 return args
最后调用run\_script(),把解析出来的args和我们实现的自定义启动器——CustomAirtestCase类一起传进去
def run_script(parsed_args, testcase_cls=AirtestCase):
 global args # make it global deliberately to be used in AirtestCase & test scripts
 args = parsed_args
 suite = unittest.TestSuite()
 suite.addTest(testcase_cls())
 result = unittest.TextTestRunner(verbosity=0).run(suite)
 if not result.wasSuccessful():
 sys.exit(-1)
这几行代码,用过unittest的朋友应该都很熟悉了,传入的参数赋值给一个全局变量以供AirtestCase和测试脚本调用


1、创建一个unittest的测试套件;


2、添加一条AirtestCase类型的case,因为接口入参默认testcase\_cls=AirtestCase,也可以是CustomAirtestCase


3、用TextTestRunner运行这个测试套件


所以Airtest的运行方式是用的unittest框架,一个测试套件下只有一条testcase,在这个testcase里执行调用air脚本,具体怎么实现的继续来看AirtestCase类,这是CustomAirtestCase的父类,这部分代码比较长,我就直接在源码里写注释吧

class AirtestCase(unittest.TestCase):

PROJECT_ROOT = "."
SCRIPTEXT = ".air"
TPLEXT = ".png"

@classmethod
def setUpClass(cls):
    #run_script传进来的参数转成全局的args
    cls.args = args
    #根据传入参数进行初始化
    setup_by_args(args)
    # setup script exec scope
    #所以在脚本中用exec_script就是调的exec_other_script接口
    cls.scope = copy(globals())
    cls.scope["exec_script"] = cls.exec_other_script

def setUp(self):
    if self.args.log and self.args.recording:
        #如果参数配置了log路径且recording为Ture
        for dev in G.DEVICE_LIST: 
            #遍历全部设备
            try:
                #开始录制
                dev.start_recording()
            except:
                traceback.print_exc()

def tearDown(self):
    #停止录制
    if self.args.log and self.args.recording:
        for k, dev in enumerate(G.DEVICE_LIST):
            try:
                output = os.path.join(self.args.log, "recording_%d.mp4" % k)
                dev.stop_recording(output)
            except:
                traceback.print_exc()

def runTest(self):
    #运行脚本
    #参数传入的air脚本路径
    scriptpath = self.args.script
    #根据air文件夹的路径转成py文件的路径
    pyfilename = os.path.basename(scriptpath).replace(self.SCRIPTEXT, ".py")
    pyfilepath = os.path.join(scriptpath, pyfilename)
    pyfilepath = os.path.abspath(pyfilepath)
    self.scope["__file__"] = pyfilepath
    #把py文件读进来
    with open(pyfilepath, 'r', encoding="utf8") as f:
        code = f.read()
    pyfilepath = pyfilepath.encode(sys.getfilesystemencoding())
    #用exec运行读进来的py文件
    try:
        exec(compile(code.encode("utf-8"), pyfilepath, 'exec'), self.scope)
    except Exception as err:
        #出错处理,记录日志
        tb = traceback.format_exc()
        log("Final Error", tb)
        six.reraise(*sys.exc_info())

def exec_other_script(cls, scriptpath):
#这个接口不分析了,因为已经用using代替了。
#这个接口就是在你的air脚本中如果用了exec_script就会调用这里,它会把子脚本的图片文件拷过来,并读取py文件执行exec
总结一下吧,上层的air脚本不需要用到什么测试框架,直接就写脚本,是因为有这个AirtestCase在支撑,用runTest这一个测试用例去处理所有的air脚本运行,这种设计思路确实降低了脚本的上手门槛,跟那些用excel表格和自然语言脚本的框架有点像。另外setup\_by\_args接口就是一些初始化的工作,如连接设备、日志等
#参数设置
 def setup_by_args(args):
 # init devices
 if isinstance(args.device, list):
 #如果传入的设备参数是一个列表,所以命令行可以设置多个设备哦
 devices = args.device
 elif args.device:
 #不是列表就给转成列表
 devices = [args.device]
 else:
 devices = []
 print(“do not connect device”)
# set base dir to find tpl 脚本路径
args.script = decode_path(args.script)

# set log dir日志路径
if args.log is True:
    print("save log in %s/log" % args.script)
    args.log = os.path.join(args.script, "log")
elif args.log:
    print("save log in '%s'" % args.log)
    args.log = decode_path(args.log)
else:
    print("do not save log")

# guess project_root to be basedir of current .air path
# 把air脚本的路径设置为工程根目录
project_root = os.path.dirname(args.script) if not ST.PROJECT_ROOT else None
# 设备的初始化连接,设置工程路径,日志路径等。
auto_setup(args.script, devices, args.log, project_root)
好了,源码分析就这么多,下面进入实战阶段 ,怎么来做脚本的“批量运行”呢?很简单,有两种思路:


用unittest框架,在testcase里用exec\_other\_script接口来调air脚本


自己写一个循环,调用run\_script接口,每次传入不同的参数(不同air脚本路径)
from launcher import Custom_luancher
 from Method import Method
 import unittest
 from airtest.core.api import *
 class TestCaseDemo(unittest.TestCase):
 def setUp(self):
 auto_setup(args.script, devices, args.log, project_root)
def test_01_register(self):
    self.exec_other_script('test_01register.air')

def test_02_name(self):
    self.exec_other_script('login.air')