目录
增加一个1维度.unsqueeze(0) 删除一个1维度squeeze(0)
tensor 转换唯独 .transpose(0,1)
某个维度上做扩张 自身重复
import torch
from torch import nn
x = torch.randn(1,2,64)
print(x.shape)
y = x.expand(50,2,64)#此时做expand,可以发现(3,)和(2, 3)是第二个维度相同,因此按第一个维度扩张
print(y.shape)
tensor 定义数据类型 避免模型训练出错
x = x.type(torch.FloatTensor)
def forward(self, x, batch_size):
x = x.type(torch.FloatTensor)
x = x.to(device)
增加一个1维度.unsqueeze(0) 删除一个1维度squeeze(0)
tensor 拼接 cat 其余唯独应该一致
print("137",x_input.shape,temp_aspect.shape)
# 137 torch.Size([50, 2, 64]) torch.Size([50, 2, 64])
x_input=torch.cat((x_input,temp_aspect),dim=2)
tensor 转换唯独 .transpose(0,1)
x_input=x_input.transpose(0,1)
tensor 改变形状 reshape
lstm_out=lstm_out.reshape(batch_size,-1)
完整的pytorch 开发模板
# -*- coding: utf-8 -*-
import pandas as pd
import gensim
import jieba
import re
import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm
from sklearn.model_selection import train_test_split
from gensim.models import KeyedVectors
from gensim.scripts.glove2word2vec import glove2word2vec
import torch
from torch import nn
import torch.utils.data as data
import torch.nn.functional as F
from torch import tensor
from sklearn.metrics import f1_score
from datetime import datetime
from torch.utils.data import Dataset, DataLoader
from torch.utils.data import random_split
from tqdm import tqdm
def data_process():
data=pd.read_excel("pre_process_level_2_table(1).xlsx")
data_neirong=list(data['内容'].values)
data_1_aspect=list(data['1_aspect'].values)
data_label=list(data['label'].values)
aspect_vec_dict={}
with open("ceshi_1_aspect_vec.txt","r") as f:
f=f.readlines()
for line in f:
temp_word=line.split("_||_")[0]
temp_vec=line.split("_||_")[1].split(" ")[:-1]
temp_vec=[float(i) for i in temp_vec]# 转化为数值型列表
aspect_vec_dict[temp_word]=temp_vec
print(aspect_vec_dict)
data_neirong_word_list=[]
text_len=[]
for line in data_neirong:
line=line.strip()
line=line.split(" ")
print(line)
while 1 :
print(1)
if '' in line:line.remove('')
if '' not in line:break
data_neirong_word_list.append(line)
text_len.append(len(line))
print("48-----------------------")
# print(max(text_len),np.mean(text_len))# 393 14.989528010696924
# 对句子进行截断重复 设置句子长度是 50
# pading_data_neirong_word_list=[]
data_x = []
temp_data_y=[]
for idx,line in tqdm(enumerate(data_neirong_word_list)):
# print("54",idx, len(line),line)
temp_line = line.copy()
# 会有数据只有空格这样子 这个while 循环会出问题
temp_idx = 0 # 设置while循环标志位 来解决这个问题
if len(line) <60:
while 1:
line=line+temp_line
# print(len(line))
temp_idx+=1
if len(line)>=50:break
if temp_idx==50:break
if temp_idx != 50:
line = line[:50]
data_x.append(line + [data_1_aspect[idx]])
temp_data_y.append(data_label[idx])
print("62----数据数目:---------",len(data_x))
# 矩阵生成
wd2 = gensim.models.Word2Vec.load("wd2.bin")#print(wd2.wv['hotel'])
data_x_vec=[]
# data_x_aspect=[]
data_y=[]
for idx,line in tqdm(enumerate(data_x)):
try:
# print(line)
temp_vec=[]
line_neirong=line[:-1]
line_1_aspect=line[-1]
for word in line_neirong:
temp_vec.append(wd2.wv[word])
temp_vec.append(np.array(aspect_vec_dict[line_1_aspect]))
data_x_vec.append(temp_vec)
data_y.append(temp_data_y[idx])
except KeyError:
pass
return np.array(data_y),np.array(data_x_vec)#,np.array(data_x_aspect)
class mydataset(Dataset):
def __init__(self): # 读取加载数据
data_y,data_x=data_process()
self._x = torch.tensor(np.array(data_x).astype(float))
self._y = torch.tensor(np.array(data_y).astype(float))
print(len(data_x),data_y.shape,data_y)
# self._aspect= torch.tensor(np.array(data_x_aspect).astype(float))
self._len = len(data_y)
def __getitem__(self, item):
return self._x[item], self._y[item]#,self._aspect[item]
def __len__(self): # 返回整个数据的长度
return self._len
mydata = mydataset()
# 划分 训练集 测试集
train_data, test_data = random_split(mydata, [round(0.8 * mydata._len), round(0.2 * mydata._len)]) # 这个参数有的版本没有 generator=torch.Generator().manual_seed(0)
# 随机混乱顺序划分的 四舍五入
#
# train_loader =DataLoader(train_data, batch_size =2, shuffle = True, num_workers = 0 , drop_last=False)
#
# # for step,(train_x,train_y) in enumerate(train_loader):
# # print(step,':',(train_x.shape,train_y.shape),(train_x,train_y))
# # break
#
# # 测试 loader
# test_loader =DataLoader(test_data, batch_size = 2, shuffle = True, num_workers = 0 , drop_last=False)
# # dorp_last 是说最后一组数据不足一个batch的时候 能继续用还是舍弃。 # num_workers 多少个进程载入数据
#
# # 测试
# # for step,(test_x,test_y) in enumerate(test_loader):
# # print(step,':',(test_x.shape,test_y.shape),(test_x,test_y))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class LSTM_attention(nn.Module): # 注意Module首字母需要大写
def __init__(self, ):
super().__init__()
input_size = 64
hidden_size = 64
output_size = 64
# input_size:输入lstm单元向量的长度 ,hidden_size输出lstm单元向量的长度。也是输入、输出隐藏层向量的长度
self.lstm = nn.LSTM(input_size, output_size, num_layers=1) # ,batch_first=True
self.ReLU = nn.ReLU()
self.attention = nn.Linear(6400,64)
self.liner=nn.Linear(128,5)
def forward(self, x, batch_size):
x = x.type(torch.FloatTensor)
x = x.to(device)
x_input=x[:,:50]
x_input=x_input.transpose(0,1)
temp_aspect=x[:,-1]
temp_aspect=temp_aspect.unsqueeze(0)
temp_aspect =temp_aspect.expand(50,batch_size, 64)
#print("137",x_input.shape,temp_aspect.shape)# 137 torch.Size([50, 2, 64]) torch.Size([50, 2, 64])
x_input=torch.cat((x_input,temp_aspect),dim=2)
#print("137",x_input.shape,temp_aspect.shape)# 137 torch.Size([50, 2, 128]) torch.Size([50, 2, 64])
# 输入 lstm的矩阵形状是:[序列长度,batch_size,每个向量的维度] [序列长度,batch, 64]
lstm_out, (h_n, c_n) = self.lstm(x, None)
lstm_out=self.ReLU(lstm_out)
last_lstm=lstm_out[:,-1]# 取最后一个
lstm_out=lstm_out[:,:-1]
lstm_out=lstm_out.transpose(0, 1)
#print("154",lstm_out.shape,temp_aspect.shape)
lstm_out=torch.cat((lstm_out,temp_aspect),dim=2)
lstm_out=lstm_out.transpose(0, 1)
lstm_out=lstm_out.reshape(batch_size,-1)
lstm_out = self.ReLU(lstm_out)
lstm_out = self.attention(lstm_out)
lstm_out = self.ReLU(lstm_out)
# print("157",lstm_out.shape,last_lstm.shape)
out_sum= torch.cat((lstm_out,last_lstm), dim=1)
# print(out_sum.shape)
prediction=self.liner(out_sum)
return prediction
# 这个函数是测试用来测试x_test y_test 数据 函数
def eval_test(model): # 返回的是这10个 测试数据的平均loss
test_epoch_loss = []
with torch.no_grad():
optimizer.zero_grad()
for step, (test_x, test_y) in enumerate(test_loader):
y_pre = model(test_x, batch_size)
test_y = test_y.to(device)
test_loss = loss_function(y_pre, test_y.long())
test_epoch_loss.append(test_loss.item())
return np.mean(test_epoch_loss)
epochs = 50
batch_size = 128
# 在模型测试中 这两个值:batch_size = 19 固定得 epochs = 随便设置
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=True, num_workers=0, drop_last=True)
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=0, drop_last=True)
# 创建LSTM()类的对象,定义损失函数和优化器
model = LSTM_attention().to(device)
loss_function = torch.nn.CrossEntropyLoss().to(device) # 损失函数的计算 交叉熵损失函数计算
optimizer = torch.optim.SGD(model.parameters(), lr=0.01) # 建立优化器实例
print(model)
sum_train_epoch_loss = [] # 存储每个epoch 下 训练train数据的loss
sum_test_epoch_loss = [] # 存储每个epoch 下 测试 test数据的loss
best_test_loss = 10000
for epoch in tqdm(range(epochs)):
epoch_loss = []
for step, (train_x, train_y) in enumerate(train_loader):
y_pred = model(train_x, batch_size)
# 训练过程中,正向传播生成网络的输出,计算输出和实际值之间的损失值
# print(y_pred,train_y)
single_loss = loss_function(y_pred.cpu(), train_y.long())
# print("single_loss",single_loss)
single_loss.backward() # 调用backward()自动生成梯度
optimizer.step() # 使用optimizer.step()执行优化器,把梯度传播回每个网络
epoch_loss.append(single_loss.item())
train_epoch_loss = np.mean(epoch_loss)
test_epoch_loss = eval_test(model) # 测试数据的平均loss
if test_epoch_loss < best_test_loss:
best_test_loss = test_epoch_loss
print("best_test_loss", best_test_loss)
best_model = model
sum_train_epoch_loss.append(train_epoch_loss)
sum_test_epoch_loss.append(test_epoch_loss)
print("epoch:" + str(epoch) + " train_epoch_loss: " + str(train_epoch_loss) + " test_epoch_loss: " + str(
test_epoch_loss))
torch.save(best_model, 'best_model.pth')
# 画图
# sum_train_epoch_loss=[]
# sum_test_epoch_loss=[]
fig = plt.figure(facecolor='white', figsize=(10, 7))
plt.xlabel('第几个epoch')
plt.ylabel('loss值')
plt.xlim(xmax=len(sum_train_epoch_loss), xmin=0)
plt.ylim(ymax=max(sum_train_epoch_loss), ymin=0)
# 画两条(0-9)的坐标轴并设置轴标签x,y
x1 = [i for i in range(0, len(sum_train_epoch_loss), 1)] # 随机产生300个平均值为2,方差为1.2的浮点数,即第一簇点的x轴坐标
y1 = sum_train_epoch_loss # 随机产生300个平均值为2,方差为1.2的浮点数,即第一簇点的y轴坐标
x2 = [i for i in range(0, len(sum_test_epoch_loss), 1)]
y2 = sum_test_epoch_loss
colors1 = '#00CED4' # 点的颜色
colors2 = '#DC143C'
area = np.pi * 4 ** 1 # 点面积
# 画散点图
plt.scatter(x1, y1, s=area, c=colors1, alpha=0.4, label='train_loss')
plt.scatter(x2, y2, s=area, c=colors2, alpha=0.4, label='val_loss')
# plt.plot([0,9.5],[9.5,0],linewidth = '0.5',color='#000000')
plt.legend()
# plt.savefig(r'C:\Users\jichao\Desktop\大论文\12345svm.png', dpi=300)
plt.show()
import sklearn
from sklearn.metrics import accuracy_score
# 模型加载:
model.load_state_dict(torch.load('best_model.pth').cpu().state_dict())
model.eval()
test_pred = []
test_true = []
with torch.no_grad():
optimizer.zero_grad()
for step, (test_x, test_y) in enumerate(test_loader):
y_pre = model(test_x, batch_size).cpu()
y_pre = torch.argmax(y_pre, dim=1)
for i in y_pre:
test_pred.append(i)
for i in test_y:
test_true.append(i)
Acc = accuracy_score(test_pred, test_true)
print(Acc)