人工智能大数据与深度学习  公众号:datayx

一.概述

文本复述任务是指把一句/段文本A改写成文本B,要求文本B采用与文本A略有差异的表述方式来表达与之意思相近的文本。

改进谷歌的LaserTagger模型,使用LCQMC等中文语料训练文本复述模型,即修改一段文本并保持原有语义。

复述的结果可用于数据增强,文本泛化,从而增加特定场景的语料规模,提高模型泛化能力。

二.模型介绍

谷歌在文献《Encode, Tag, Realize: High-Precision Text Editing》中采用序列标注的框架进行文本编辑,在文本拆分和自动摘要任务上取得了最佳效果。

在同样采用BERT作为编码器的条件下,本方法相比于Seq2Seq的方法具有更高的可靠度,更快的训练和推理效率,且在语料规模较小的情况下优势更明显。

文本复述,中文文本数据增强_人工智能

谷歌公开了本文献对应的代码,但是原有任务与当前任务有一定的差异性,需要修改部分代码,主要修改如下:

A.分词方式:原代码针对英文,以空格为间隔分成若干词。现在针对中文,分成若干字。

B.推理效率:原代码每次只对一个文本进行复述,改成每次对batch_size个文本进行复述,推理效率提高6倍。

三.文件说明和实验步骤

1.安装python模块 参见"requirements.txt", "rephrase.sh" 2.训练和评测模型

文件需求 bert预训练的tensorflow 模型

采用RoBERTa-tiny-clue(中文版)预训练模型。 网址

https://storage.googleapis.com/cluebenchmark/pretrained_models/RoBERTa-tiny-clue.zip

如果想采用其他预训练模型,请修改“configs/lasertagger_config.json".

代码跑通顺序:第一种方法:修改运行rephrase.sh 第二种方法详解: 

第一步:制作训练测试验证集 python get_pairs_chinese/get_text_pair_lcqmc.py 获得lcqmc中的文本复述语料(语义一致的文本对,且字面表述差异不能过大,第三列为最长公共子串长度与总长度的比值)

只需要修改lcqmc的目录位置即可

python get_pairs_chinese/get_text_pair.py 可根据自己的预料获得文本复述语料(第三列为最长公共子串长度与总长度的比值)

再运行merge_split_corpus.py 将 结果数据 按比例划分 训练、测试、验证集

第二步:短语_词汇表_优化 python phrase_vocabulary_optimization.py

--input_file=./data/train.txt

--input_format=wikisplit

--vocabulary_size=500

--max_input_examples=1000000

--enable_swap_tag=false

--output_file=./output/label_map.txt

第三步:

1、制作后续训练模型的验证集

python preprocess_main.py

--input_file=./data/tune.txt

--input_format=wikisplit

--output_tfrecord=./output/tune.tf_record

--label_map_file=./output/label_map.txt

--vocab_file=./data/RoBERTa-tiny-clue/vocab.txt

--max_seq_length=40

--output_arbitrary_targets_for_infeasible_examples=false 2、制作后续训练模型的训练集

python preprocess_main.py

--input_file=./data/train.txt

--input_format=wikisplit

--output_tfrecord=./output/train.tf_record

--label_map_file=./output/label_map.txt

--vocab_file=./data/RoBERTa-tiny-clue/vocab.txt

--max_seq_length=40

--output_arbitrary_targets_for_infeasible_examples=false

第四步:

1、训练模型

python run_lasertagger.py

--training_file=./output/train.tf_record

--eval_file=./output/tune.tf_record

--label_map_file=./output/label_map.txt

--model_config_file=./configs/lasertagger_config.json

--output_dir=./output/models/wikisplit_experiment_name

--init_checkpoint=./data/RoBERTa-tiny-clue/bert_model.ckpt

--do_train=true

--do_eval=true

--train_batch_size=256

--save_checkpoints_steps=200

--max_seq_length=40

--num_train_examples=319200

--num_eval_examples=5000

2、 模型整理

python run_lasertagger.py

--label_map_file=./output/label_map.txt

--model_config_file=./configs/lasertagger_config.json

--output_dir=./output/models/wikisplit_experiment_name

--do_export=true

--export_path=./output/models/wikisplit_experiment_name

第五步 根据test文件进行预测

python predict_main.py

--input_file=./data/test.txt

--input_format=wikisplit

--output_file=./output/models/wikisplit_experiment_name/pred.tsv

--label_map_file=./output/label_map.txt

--vocab_file=./data/RoBERTa-tiny-clue/vocab.txt

--max_seq_length=40

--saved_model=./output/models/wikisplit_experiment_name/1587693553

# 解析,这应该是最后保存的模型文件名称 可以考如下语句获得

# (ls "./output/models/wikisplit_experiment_name/" | grep -v "temp-" | sort -r | head -1) 第六步 对第五步预测的文件进行打分。

python score_main.py --prediction_file=./output/models/wikisplit_experiment_name/pred.tsv

#根据自己情况修改脚本"rephrase.sh"中2个文件夹的路径,然后运行 sh rephrase.sh

#脚本中的变量HOST_NAME是作者为了方便设定路径使用的,请根据自己情况修改;

#如果只是离线的对文本进行批量的泛化,可以注释脚本中其他部分,只用predict_main.py就可以满足需求。

3.启动文本复述服务 根据自己需要,可选

根据自己情况修改"rephrase_server.sh"文件中几个文件夹的路径,使用命令"sh rephrase_server.sh"可以启动一个文本复述的API服务

本API服务可以接收一个http的POST请求,解析并对其中的文本进行泛化,具体接口请看“rephrase_server/rephrase_server_flask.py"

有几个脚本文件如rephrase_for_qa.sh,rephrase_for_chat.sh,rephrase_for_skill.sh是作者自己办公需要的,可以忽略

四.实验效果

  1. 在公开数据集Wiki Split上复现模型:

    Wiki Split数据集是英文语料,训练模型将一句话拆分成两句话,并保持语义一致,语法合理,语义连贯通顺。

  2. Exact score=15,SARI score=61.5,KEEP score=93,ADDITION score=32,DELETION score=59,
    基本与论文中的Exact score=15.2;SARI score=61.7一致(这些分数均为越高越好)。

  3. 在自己构造的中文数据集训练文本复述模型:
    (1)语料来源
    (A)一部分语料来自于LCQMC语料中的正例,即语义接近的一对文本;
    (B)另一部分语料来自于宝安机场用户QA下面同一答案的问题。; 因为模型的原理,要求文本A和B在具有一定的重合字数,故过滤掉上述两个来源中字面表述差异大的文本,如“我要去厕所”与“卫生间在哪里”。对语料筛选后对模型进行训练和测试。
    (2)测试结果:
    对25918对文本进行复述和自动化评估,评测分数如下(越高越好):
    Exact score=29,SARI score=64,KEEP score=84,ADDITION score=39,DELETION score=66.
    CPU上耗时0.5小时,平均复述一句话需要0.72秒。
    可能是语言和任务不同,在中文文本复述上的评测分数比公开数据集高一些。

五.一些trick

1.可以设定对于某些字或词不做修改 如对实体识别NER的语料泛化,需要保证模型不能修改其中的实体;

对业务语料泛化,也可以根据情况保证模型不能修改其中的关键字 如日期,航班号等;

目前,是通过正则的方式定位这些不能被模型修改的位置,然后将这些位置的location设置为1,具体实现参见tagging.py.

2.增加复述文本与原文本的差异度

可以对训练语料中的text_a先进行随机的swag操作,相应地脚本中enable_swap_tag改为true,再训练模型将其改写为text_b;

实际应用或测试时同样将原始文本text_a先进行随机的swag操作,然后利用模型改写为text_b;

因为训练语料中text_a是不通顺,但text_b是通顺的,所以实际应用或测试时仍然会得到通顺的复述结果。

六.数据集

1.由于不少人咨询我数据集的问题,现将数据集地址贴在下面

You can download LCQMC data set from https://download.csdn.net/download/tcd1112/12357994,But other data is the company data can't give you. You can also leave your E-mail, I will send you LCQMC data



 搜索公众号添加: datayx  

文本复述,中文文本数据增强_图像识别_02


机大数据技术与机器学习工程

 搜索公众号添加: datanlp

文本复述,中文文本数据增强_人工智能_03

长按图片,识别二维码