1.车牌检测和识别项目介绍

基于Python的车牌检测和识别系统_人工智能

车牌的检测和识别的应用非常广泛,比如交通违章车牌追踪,小区或地下车库门禁。在对车牌识别和检测的过程中,因为车牌往往是规整的矩形,长宽比相对固定,色调纹理相对固定,常用的方法有:基于形状、基于色调、基于纹理、基于文字特征等方法,近年来随着深度学习的发展也会使用目标检测的一些深度学习方法。该项目主要的流程如下图所示:

基于Python的车牌检测和识别系统_计算机视觉_02

1.输入原始图片,通过二值化,边缘检测,和基于色调的颜色微调等办法检测出原图中的车牌号的位置;

2.把检测到的车牌(ROI)裁剪,为车牌号的识别做准备;

3.基于裁剪的车牌号,使用直方图的波峰波谷分割裁剪的车牌号(如上图中的第3步)

4.训练机器学习模型做车牌识别,这里训练了2个SVM,一个SVM用来识别省份简称(如 鲁),另一个SVM用来识别字母和数字。

5.通过PyQt5把整个算法封装成GUI程序,并打包发布安装软件。

2.项目代码解析

下图描述了整个项目的代码结构,其结构如下: 

基于Python的车牌检测和识别系统_计算机视觉_03

基于Python的车牌检测和识别系统_机器学习_04




  1. 目标检测/文本检测系列算法讲解课程(13课时)
  2. 机器学习系列算法理论讲解课程(20课时)
  3. 深度神经网络算法(38课时)
  4. 知识图谱(11课时)

3.项目演示

这里展示一些识别结果和测试视频:

基于Python的车牌检测和识别系统_机器学习_05

基于Python的车牌检测和识别系统_图像识别_06

基于Python的车牌检测和识别系统_图像识别_07

​基于谷歌街景多位数字识别技术:TensorFlow的车牌号识别系统​

机器学习算法AI大数据技术

 搜索公众号添加: datanlp

基于Python的车牌检测和识别系统_机器学习_08

长按图片,识别二维码



深度学习、机器学习、数据分析、python

 搜索公众号添加: datayx  

基于Python的车牌检测和识别系统_机器学习_09