题目描述
设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号。每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都有一个加分,任一棵子树subtree(也包含tree本身)的加分计算方法如下:
subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数。
若某个子树为空,规定其加分为1,叶子的加分就是叶节点本身的分数。不考虑它的空子树。
试求一棵符合中序遍历为(1,2,3,…,n)且加分最高的二叉树tree。要求输出;
(1)tree的最高加分
(2)tree的前序遍历
输入输出格式
输入格式:
第1行:一个整数n(n<30),为节点个数。
第2行:n个用空格隔开的整数,为每个节点的分数(分数<100)。
输出格式:
第1行:一个整数,为最高加分(结果不会超过4,000,000,000)。
第2行:n个用空格隔开的整数,为该树的前序遍历。
算法分析:
结合问题,如果整棵树的权值最大,必然有左子树的权值最大,右子树的权值也最大,符合最优性原理。
而却不是一道树规的题目。因为我们可以用区间动规的模型解决掉:直接定义一个f[i][j]表示从i到j的最大值,则
枚举k即可。
接下来是如何建树的问题,只有把树建好了,才能输出其前序遍历。于是,我们看到了两个关键词:二叉树,中序遍历。有了这两个关键词,加上区间动规,这棵树就能建起来了。根据二叉树的特性来建树。所以这颗树的前序遍历,只需要边动规边记录下root[i][j]=k表示i到j的根为k即可确定树的构造。
前序遍历(DLR)
前序遍历首先访问根结点然后遍历左子树,最后遍历右子树。在遍历左、右子树时,仍然先访问根结点,然后遍历左子树,最后遍历右子树。
若二叉树为空则结束返回,否则:
(1)访问根结点
(2)前序遍历左子树
(3)前序遍历右子树
注意的是:遍历左右子树时仍然采用前序遍历方法。
如上图所示二叉树
前序遍历,也叫先根遍历,遍历的顺序是,根,左子树,右子树
遍历结果:ABCDEF
中序遍历,也叫中根遍历,顺序是 左子树,根,右子树
遍历结果:CBDAEF
后序遍历,也叫后根遍历,遍历顺序,左子树,右子树,根
遍历结果:CDBFEA
AC代码: