1. 背景介绍
15年移动端直播应用火起来的时候,主要的直播协议是RTMP,多媒体服务以Adobe的AMS、wowza、Red5、crtmpserver、nginx rtmp module等,后面过长RTMP服务SRS开始流行。Android端播放器主要以开始以EXOPlayer播放HLS,但是HLS有延迟高的确定,随后大家主要使用开源的ijkplyer,ijkplayer通过ffmpeg进行拉流及解码,支持多种音视频编码,还有跨平台,API与系统播放器保持一致等特征,后续各大厂提供的直播SDK均有ijkplayer身影。
当时在做一款游戏SDK,SDK主要提供了游戏画面声音采集、音视频编解码、直播推流、直播拉流播放等,SDK为游戏提供直播功能,播放也是采用了现成的ijkplayer播放器。但是SDK推广的时候遇到了问题,游戏厂家嫌弃SDK体积大(其实总共也就3Mb左右),我们需要一款体积小,性能高的播放器,由于开发成本的原因一直没有时间做,后面换工作期间,花了一个月时间把这款播放器开发出来,并开源了出来。oarplayer 是基于MediaCodec与srs-librtmp,完全不依赖ffmpeg,纯C语言实现的播放器。本文主要介绍这款播放器的实现思路。
2. 整体架构设计
播放器整体播放流程如下:
通过srs-librtmp拉取直播流,通过package type分离音视频流,将package数据缓存到package队列,解码线程不断从package队列读取package交由解码器解码,解码器将解码后的frame存储到frame队列,opensles播放线程与opengles渲染线程从frame队列读取frame播放与渲染,这里还涉及到音视频同步。
播放器主要涉及了以下线程:
- rtmp拉流线程;
- 音频解码线程;
- 视频解码线程;
- 音频播放线程;
- 视频渲染线程;
- JNI回调线程。
3. API接口设计
通过以下几步即可完成rtmp播放:
- 实例化OARPlayer:
OARPlayer player = new OARPlayer();
- 设置视频源:
player.setDataSource(rtmp_url);
- 设置surface:
player.setSurface(surfaceView.getHolder());
- 开始播放:
player.start();
- 停止播放:
player.stop();
- 释放资源:
player.release();
Java层方法封装了JNI层方法,JNI层封装调用了对应的具体功能。
4. rtmp拉流线程
oarplayer使用的是srs-librtmp,srs-librtmp是从SRS服务器导出的一个客户端库,作者提供srs-librtmp初衷是:
- 觉得rtmpdump/librtmp的代码太难读了,而SRS的代码可读性很好;
- 压测工具srs-bench是个客户端,需要一个客户端库;
- 觉得服务器能搞好,客户端也不在话下
目前srs-librtmp作者已经停止维护,主要原因如作者所说:
决定开源项目正义的绝对不是技术多好,而是能跑多久。技术很牛,性能很强,代码风格很好,固然是个好事,但是这些都顶不上一个“不维护”的大罪过,代码放出来不维护,怎么跟进业内技术的不断发展呢。而决定能跑多久的,首先是技术热情,然后是维护者的领域背景。SRS的维护者都是服务器背景,大家的工作都是在服务器,客户端经验太少了,无法长久维护客户端的库。因此,SRS决定果断放弃srs-librtmp,不再维护客户端库,聚焦于服务器的快速迭代。客户端并非不重要,而是要交给专业的客户端的开源项目和朋友维护,比如FFmpeg也自己实现了librtmp。
oarplayer当初使用srs-librtmp是基于srs-librtmp代码的可读性考虑。oarplayer有相当高的模块化特性,可以很方便的替换各个rtmp lib实现。这里介绍srs-librtmp接口:
- 创建srs_rtmp_t对象:
srs_rtmp_create(url)
; - 设置读写超时时间:
srs_rtmp_set_timeout
; - 开始握手:
srs_rtmp_handshake
; - 开始连接:
srs_rtmp_connect_app
; - 设置播放模式:
srs_rtmp_play_stream
; - 循环读取音视频包:
srs_rtmp_read_packet(rtmp, &type, ×tamp, &data, &size)
; - 解析音频包:
- 获取编码类型:
srs_utils_flv_audio_sound_format
; - 获取音频采样率:
srs_utils_flv_audio_sound_rate
; - 获取采样位深:
srs_utils_flv_audio_sound_size
; - 获取声道数:
srs_utils_flv_audio_sound_type
; - 获取音频包类型:
srs_utils_flv_audio_aac_packet_type
;
- 解析视频包:
- 获取编码类型:
srs_utils_flv_video_codec_id
; - 是否关键帧:
srs_utils_flv_video_frame_type
; - 获取视频包类型:
srs_utils_flv_video_avc_packet_type
;
- 解析metadata类型;
- 销毁srs_rtmp_t对象:
srs_rtmp_destroy
;
这里有个小技巧,我们在拉流线程中,循环调用srs_rtmp_read_packet
方法,可以通过srs_rtmp_set_timeout
设置超时时间,但是如果超时时间设置的太短,会导致频繁的唤起线程,如果设置超时时间太长,我们在停止时,必须等待超时结束才会能真正结束。这里我们可以使用poll模型,将rtmp的tcp socket放入poll中,再放入一个管道fd,在需要停止时向管道写入一个指令,唤醒poll,直接停止rtmp拉流线程。
5. 主要数据结构
5.1 package结构:
typedef struct OARPacket {
int size;//包大小
PktType_e type;//包类型
int64_t dts;//解码时间戳
int64_t pts;//显示时间戳
int isKeyframe;//是否关键帧
struct OARPacket *next;//下一个包地址
uint8_t data[0];//包数据内容
}OARPacket;
5.2 package队列:
typedef struct oar_packet_queue {
PktType_e media_type;//类型
pthread_mutex_t *mutex;//线程锁
pthread_cond_t *cond;//条件变量
OARPacket *cachedPackets;//队列首地址
OARPacket *lastPacket;//队列最后一个元素
int count;//数量
int total_bytes;//总字节数
uint64_t max_duration;//最大时长
void (*full_cb)(void *);//队列满回调
void (*empty_cb)(void *);//队列为空回调
void *cb_data;
} oar_packet_queue;
5.3 Frame类型
typedef struct OARFrame {
int size;//帧大小
PktType_e type;//帧类型
int64_t dts;//解码时间戳
int64_t pts;//显示时间戳
int format;//格式(用于视频)
int width;//宽(用于视频)
int height;//高(用于视频)
int64_t pkt_pos;
int sample_rate;//采样率(用于音频)
struct OARFrame *next;
uint8_t data[0];
}OARFrame;
5.4 Frame队列
typedef struct oar_frame_queue {
pthread_mutex_t *mutex;
pthread_cond_t *cond;
OARFrame *cachedFrames;
OARFrame *lastFrame;
int count;//帧数量
unsigned int size;
} oar_frame_queue;
6. 解码线程
我们的rtmp流拉取、解码、渲染、音频输出都在C层实现。在C层,Android 21之后系统提供了AMediaCodec接口,我们直接find_library(media-ndk mediandk)
,并引入<media/NdkMediaCodec.h>
头文件即可。对于Android 21之前版本,可以在C层调用Java层的MediaCodec。下面分别介绍两种实现:
6.1 Java层代理解码
Java层MediaCodec解码使用步骤:
- 创建解码器:
codec = MediaCodec.createDecoderByType(codecName);
- 配置解码器格式:
codec.configure(format, null, null, 0);
- 启动解码器:
codec.start()
- 获取解码输入缓存ID:
dequeueInputBuffer
- 获取解码输入缓存:
getInputBuffer
- 获取解码输出缓存:
dequeueOutputBufferIndex
- 释放输出缓存:
releaseOutPutBuffer
- 停止解码器:
codec.stop();
Jni层封装对应的调用接口即可。
6.2 C层解码器使用
C层接口介绍:
- 创建Format:
AMediaFormat_new
; - 创建解码器:
AMediaCodec_createDecoderByType
; - 配置解码参数:
AMediaCodec_configure
; - 启动解码器:
AMediaCodec_start
; - 输入音视频包:
- 获取输入buffer序列:
AMediaCodec_dequeueInputBuffer
- 获取输入buffer:
AMediaCodec_getInputBuffer
- 拷贝数据:
memcpy
- 输入buffer放入解码器:
AMediaCodec_queueInputBuffer
- 获取解码后帧:
- 获取输出buffer序列:
AMediaCodec_dequeueOutputBuffer
- 获取输出buffer:
AMediaCodec_getOutputBuffer
我们发现不管是Java层还是C层的接口都是提供了类似的思路,其实他们最终调用的还是系统的解码框架。
这里我们可以根据系统版本来觉得使用Java层接口和C层接口,我们的oarplayer,主要的代码都是在C层实现,所以我们也有限使用C层接口。
7. 音频输出线程
音频输出我们使用opensl实现,之前文章介绍过Android音频架构,其实也可以使用AAudio或者Oboe。这里再简单介绍下opensl es的使用。
- 创建引擎:
slCreateEngine(&engineObject, 0, NULL, 0, NULL, NULL);
- 实现引擎:
(*engineObject)->Realize(engineObject, SL_BOOLEAN_FALSE);
- 获取接口:
(*engineObject)->GetInterface(engineObject, SL_IID_ENGINE, &engineEngine);
- 创建输出混流器:
(*engineEngine)->CreateOutputMix(engineEngine, &outputMixObject, 0, NULL, NULL);
; - 实现混流器:
(*outputMixObject)->Realize(outputMixObject, SL_BOOLEAN_FALSE);
- 配置音频源:
SLDataLocator_AndroidSimpleBufferQueue loc_bufq = {SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE, 2};
- 配置Format:
SLDataFormat_PCM format_pcm = {SL_DATAFORMAT_PCM, channel, SL_SAMPLINGRATE_44_1,SL_PCMSAMPLEFORMAT_FIXED_16, SL_PCMSAMPLEFORMAT_FIXED_16,SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT, SL_BYTEORDER_LITTLEENDIAN};
- 创建播放器:
(*engineEngine)->CreateAudioPlayer(engineEngine,&bqPlayerObject, &audioSrc, &audioSnk,2, ids, req);
- 实现播放器:
(*bqPlayerObject)->Realize(bqPlayerObject, SL_BOOLEAN_FALSE);
- 获取播放接口:
(*bqPlayerObject)->GetInterface(bqPlayerObject, SL_IID_PLAY, &bqPlayerPlay);
- 获取缓冲区接口:
(*bqPlayerObject)->GetInterface(bqPlayerObject, SL_IID_ANDROIDSIMPLEBUFFERQUEUE,&bqPlayerBufferQueue);
- 注册缓存回调:
(*bqPlayerBufferQueue)->RegisterCallback(bqPlayerBufferQueue, bqPlayerCallback, oar);
- 获取音量调节器:
(*bqPlayerObject)->GetInterface(bqPlayerObject, SL_IID_VOLUME, &bqPlayerVolume);
- 缓存回调中不断的从音频帧队列读取数据,并写入缓存队列:
(*bqPlayerBufferQueue)->Enqueue(bqPlayerBufferQueue, ctx->buffer,(SLuint32)ctx->frame_size);
上面就是音频播放的opensl es接口使用介绍。
8. 渲染线程
相比较于音频播放,视频渲染可能更复杂一些,除了opengl引擎创建,opengl线程创建,oarplayer使用的是基于音频的同步方式,所以在视频渲染时还需要考虑音视频同步问题。
8.1 OpenGL引擎创建
- 生成buffer:
glGenBuffers
- 绑定buffer:
glBindBuffer(GL_ARRAY_BUFFER, model->vbos[0])
- 设置清屏色:
glClearColor
- 创建纹理对象:
texture2D
- 创建着色器对象:
glCreateShader
- 设置着色器源码:
glShaderSource
- 编译着色器源码:
glCompileShader
- 附着着色器:
glAttachShader
- 连接着色器:
glLinkProgram
opengl与硬件交互还需要EGL环境,下面展示EGL初始化流程代码:
static void init_egl(oarplayer * oar){
oar_video_render_context *ctx = oar->video_render_ctx;
const EGLint attribs[] = {EGL_SURFACE_TYPE, EGL_WINDOW_BIT, EGL_RENDERABLE_TYPE,
EGL_OPENGL_ES2_BIT, EGL_BLUE_SIZE, 8, EGL_GREEN_SIZE, 8, EGL_RED_SIZE,
8, EGL_ALPHA_SIZE, 8, EGL_DEPTH_SIZE, 0, EGL_STENCIL_SIZE, 0,
EGL_NONE};
EGLint numConfigs;
ctx->display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
EGLint majorVersion, minorVersion;
eglInitialize(ctx->display, &majorVersion, &minorVersion);
eglChooseConfig(ctx->display, attribs, &ctx->config, 1, &numConfigs);
ctx->surface = eglCreateWindowSurface(ctx->display, ctx->config, ctx->window, NULL);
EGLint attrs[] = {EGL_CONTEXT_CLIENT_VERSION, 2, EGL_NONE};
ctx->context = eglCreateContext(ctx->display, ctx->config, NULL, attrs);
EGLint err = eglGetError();
if (err != EGL_SUCCESS) {
LOGE("egl error");
}
if (eglMakeCurrent(ctx->display, ctx->surface, ctx->surface, ctx->context) == EGL_FALSE) {
LOGE("------EGL-FALSE");
}
eglQuerySurface(ctx->display, ctx->surface, EGL_WIDTH, &ctx->width);
eglQuerySurface(ctx->display, ctx->surface, EGL_HEIGHT, &ctx->height);
initTexture(oar);
oar_java_class * jc = oar->jc;
JNIEnv * jniEnv = oar->video_render_ctx->jniEnv;
jobject surface_texture = (*jniEnv)->CallStaticObjectMethod(jniEnv, jc->SurfaceTextureBridge, jc->texture_getSurface, ctx->texture[3]);
ctx->texture_window = ANativeWindow_fromSurface(jniEnv, surface_texture);
}
8.2 音视频同步
常见的音视频同步有三种:
- 基于视频同步;
- 基于音频同步;
- 基于第三方时间戳同步。
这里我们使用基于音频帧同步的方法,渲染画面时,判断音频时间戳diff与视频画面渲染周期,如果大于周期,则等待,如果大于0小于周期,如果小于0则立马绘制。
下面展示渲染代码:
/**
*
* @param oar
* @param frame
* @return 0 draw
* -1 sleep 33ms continue
* -2 break
*/
static inline int draw_video_frame(oarplayer *oar) {
// 上一次可能没有画, 这种情况就不需要取新的了
if (oar->video_frame == NULL) {
oar->video_frame = oar_frame_queue_get(oar->video_frame_queue);
}
// buffer empty ==> sleep 10ms , return 0
// eos ==> return -2
if (oar->video_frame == NULL) {
_LOGD("video_frame is null...");
usleep(BUFFER_EMPTY_SLEEP_US);
return 0;
}
int64_t time_stamp = oar->video_frame->pts;
int64_t diff = 0;
if(oar->metadata->has_audio){
diff = time_stamp - (oar->audio_clock->pts + oar->audio_player_ctx->get_delta_time(oar->audio_player_ctx));
}else{
diff = time_stamp - oar_clock_get(oar->video_clock);
}
_LOGD("time_stamp:%lld, clock:%lld, diff:%lld",time_stamp , oar_clock_get(oar->video_clock), diff);
oar_model *model = oar->video_render_ctx->model;
// diff >= 33ms if draw_mode == wait_frame return -1
// if draw_mode == fixed_frequency draw previous frame ,return 0
// diff > 0 && diff < 33ms sleep(diff) draw return 0
// diff <= 0 draw return 0
if (diff >= WAIT_FRAME_SLEEP_US) {
if (oar->video_render_ctx->draw_mode == wait_frame) {
return -1;
} else {
draw_now(oar->video_render_ctx);
return 0;
}
} else {
// if diff > WAIT_FRAME_SLEEP_US then use previous frame
// else use current frame and release frame
// LOGI("start draw...");
pthread_mutex_lock(oar->video_render_ctx->lock);
model->update_frame(model, oar->video_frame);
pthread_mutex_unlock(oar->video_render_ctx->lock);
oar_player_release_video_frame(oar, oar->video_frame);
JNIEnv * jniEnv = oar->video_render_ctx->jniEnv;
(*jniEnv)->CallStaticVoidMethod(jniEnv, oar->jc->SurfaceTextureBridge, oar->jc->texture_updateTexImage);
jfloatArray texture_matrix_array = (*jniEnv)->CallStaticObjectMethod(jniEnv, oar->jc->SurfaceTextureBridge, oar->jc->texture_getTransformMatrix);
(*jniEnv)->GetFloatArrayRegion(jniEnv, texture_matrix_array, 0, 16, model->texture_matrix);
(*jniEnv)->DeleteLocalRef(jniEnv, texture_matrix_array);
if (diff > 0) usleep((useconds_t) diff);
draw_now(oar->video_render_ctx);
oar_clock_set(oar->video_clock, time_stamp);
return 0;
}
}
9. 总结
本文基于Android端的RTMP播放器实现过程,介绍了RTMP推拉流库、Android MediaCodec Java层与C层接口、OpenSL ES接口、OpenGL ES接口、EGL接口、以及音视频相关知识