点击上方“码农沉思录
      发现更多精彩
 1. Math.random() 静态方法产生的随机数是 0 - 1 之间的一个 double,即 0 <= random <= 1
for (int i = 0; i < 10; i++) {
  System.out.println(Math.random());
}
结果:
0.35986138956064260.26667781453658110.250907310642433550.0110649980616662760.6006862281756390.90840060276294960.127005246548478330.60846058490693430.72908047825142610.9923831908303121
实现原理:
When this method is first called, it creates a single new pseudorandom-number generator, exactly as if by the expression new java.util.Random()
This new pseudorandom-number generator is used thereafter for all calls to this method and is used nowhere else.
当第一次调用 Math.random() 方法时,自动创建了一个伪随机数生成器,实际上用的是 new java.util.Random()
当接下来继续调用 Math.random() 方法时,就会使用这个新的伪随机数生成器。源码如下:
public static double random() {
    Random rnd = randomNumberGenerator;
    if (rnd == null) rnd = initRNG(); // 第一次调用,创建一个伪随机数生成器
    return rnd.nextDouble();
}

private static synchronized Random initRNG() {
    Random rnd = randomNumberGenerator;
    return (rnd == null) ? (randomNumberGenerator = new Random()) : rnd; // 实际上用的是new java.util.Random()
}
This method is properly synchronized to allow correct use by more than one thread. However, if many threads need to generate pseudorandom numbers at a great rate, it may reduce contention for each thread to have its own pseudorandom-number generator.
initRNG() 方法是 synchronized 的,因此在多线程情况下,只有一个线程会负责创建伪随机数生成器(使用当前时间作为种子),其他线程则利用该伪随机数生成器产生随机数。因此 Math.random() 方法是线程安全的。什么情况下随机数的生成线程不安全:
  • 线程1在第一次调用 random() 时产生一个生成器 generator1,使用当前时间作为种子。

  • 线程2在第一次调用 random() 时产生一个生成器 generator2,使用当前时间作为种子。

  • 碰巧 generator1generator2 使用相同的种子,导致 generator1 以后产生的随机数每次都和 generator2 以后产生的随机数相同。

什么情况下随机数的生成线程安全:Math.random() 静态方法使用
  • 线程1在第一次调用 random() 时产生一个生成器 generator1,使用当前时间作为种子。

  • 线程2在第一次调用 random() 时发现已经有一个生成器 generator1,则直接使用生成器 generator1

    public class JavaRandom {
        public static void main(String args[]) {
            new MyThread().start();
            new MyThread().start();
        }
    }
    class MyThread extends Thread {
        public void run() {
            for (int i = 0; i < 2; i++) {
                System.out.println(Thread.currentThread().getName() + ": " + Math.random());
            }
        }
    }
结果:
Thread-1: 0.8043581595645333Thread-0: 0.9338269554390357Thread-1: 0.5571569413128877Thread-0: 0.37484586843392464

2. java.util.Random 工具类

基本算法:linear congruential pseudorandom number generator (LGC) 线性同余法伪随机数生成器缺点:可预测
An attacker will simply compute the seed from the output values observed. This takes significantly less time than 2^48 in the case of java.util.Random.
从输出中可以很容易计算出种子值。It is shown that you can predict future Random outputs observing only two(!) output values in time roughly 2^16.
因此可以预测出下一个输出的随机数。You should never use an LCG for security-critical purposes.
在注重信息安全的应用中,不要使用 LCG 算法生成随机数,请使用 SecureRandom。
使用:
Random random = new Random();

for (int i = 0; i < 5; i++) {
    System.out.println(random.nextInt());
}
结果:
-24520987-96094681-9526224273002604191489256498
Random类默认使用当前系统时钟作为种子:
public Random() {
    this(seedUniquifier() ^ System.nanoTime());
}

public Random(long seed) {
    if (getClass() == Random.class)
        this.seed = new AtomicLong(initialScramble(seed));
    else {
        // subclass might have overriden setSeed
        this.seed = new AtomicLong();
        setSeed(seed);
    }
}
Random类提供的方法:API
  • nextBoolean() - 返回均匀分布的 true 或者 false

  • nextBytes(byte[] bytes)

  • nextDouble() - 返回 0.0 到 1.0 之间的均匀分布的 double

  • nextFloat() - 返回 0.0 到 1.0 之间的均匀分布的 float

  • nextGaussian()- 返回 0.0 到 1.0 之间的高斯分布(即正态分布)的 double

  • nextInt() - 返回均匀分布的 int

  • nextInt(int n) - 返回 0 到 n 之间的均匀分布的 int (包括 0,不包括 n)

  • nextLong() - 返回均匀分布的 long

  • setSeed(long seed) - 设置种子

只要种子一样,产生的随机数也一样:因为种子确定,随机数算法也确定,因此输出是确定的!
Random random1 = new Random(10000);
Random random2 = new Random(10000);

for (int i = 0; i < 5; i++) {
    System.out.println(random1.nextInt() + " = " + random2.nextInt());
}
结果:
-498702880 = -498702880-858606152 = -8586061521942818232 = 1942818232-1044940345 = -10449403451588429001 = 1588429001

3. java.util.concurrent.ThreadLocalRandom 工具类

ThreadLocalRandom 是 JDK 7 之后提供,也是继承至 java.util.Random。
private static final ThreadLocal<ThreadLocalRandom> localRandom =
    new ThreadLocal<ThreadLocalRandom>() {
        protected ThreadLocalRandom initialValue() {
            return new ThreadLocalRandom();
        }
};
每一个线程有一个独立的随机数生成器,用于并发产生随机数,能够解决多个线程发生的竞争争夺。效率更高!
ThreadLocalRandom 不是直接用 new 实例化,而是第一次使用其静态方法 current() 得到 ThreadLocal<ThreadLocalRandom> 实例,然后调用 java.util.Random 类提供的方法获得各种随机数。使用:
public class JavaRandom {
    public static void main(String args[]) {
        new MyThread().start();
        new MyThread().start();
    }
}
class MyThread extends Thread {
    public void run() {
        for (int i = 0; i < 2; i++) {
            System.out.println(Thread.currentThread().getName() + ": " + ThreadLocalRandom.current().nextDouble());
        }
    }
}
结果:
Thread-0: 0.13267085355389086Thread-1: 0.1138484950410098Thread-0: 0.17187774671469858Thread-1: 0.9305225910262372

4. java.Security.SecureRandom

也是继承至 java.util.Random。
Instances of java.util.Random are not cryptographically secure. Consider instead using SecureRandom to get a cryptographically secure pseudo-random number generator for use by security-sensitive applications.SecureRandom takes Random Data from your os (they can be interval between keystrokes etc - most os collect these data store them in files - /dev/random and /dev/urandom in case of linux/solaris) and uses that as the seed.操作系统收集了一些随机事件,比如鼠标点击,键盘点击等等,SecureRandom 使用这些随机事件作为种子。
SecureRandom 提供加密的强随机数生成器 (RNG),要求种子必须是不可预知的,产生非确定性输出。SecureRandom 也提供了与实现无关的算法,因此,调用方(应用程序代码)会请求特定的 RNG 算法并将它传回到该算法的 SecureRandom 对象中。如果仅指定算法名称,如下所示:
SecureRandom random = SecureRandom.getInstance("SHA1PRNG");
如果既指定了算法名称又指定了包提供程序,如下所示:
SecureRandom random = SecureRandom.getInstance("SHA1PRNG", "SUN");
使用:
SecureRandom random1 = SecureRandom.getInstance("SHA1PRNG");
SecureRandom random2 = SecureRandom.getInstance("SHA1PRNG");

for (int i = 0; i < 5; i++) {
    System.out.println(random1.nextInt() + " != " + random2.nextInt());
}
结果:
704046703 != 211722993560819811 != 107252259425075610 != -295395347682299589 != -1637998900-1147654329 != 1418666937

5. 随机字符串

可以使用 Apache Commons-Lang 包中的 RandomStringUtils 类。
Maven 依赖如下:
<dependency>
    <groupId>commons-lang</groupId>
    <artifactId>commons-lang</artifactId>
    <version>2.6</version>
</dependency>
API 参考:https://commons.apache.org/proper/commons-lang/javadocs/api-2.6/org/apache/commons/lang/RandomStringUtils.html示例:
public class RandomStringDemo {
    public static void main(String[] args) {
        // Creates a 64 chars length random string of number.
        String result = RandomStringUtils.random(64, false, true);
        System.out.println("random = " + result);

        // Creates a 64 chars length of random alphabetic string.
        result = RandomStringUtils.randomAlphabetic(64);
        System.out.println("random = " + result);

        // Creates a 32 chars length of random ascii string.
        result = RandomStringUtils.randomAscii(32);
        System.out.println("random = " + result);

        // Creates a 32 chars length of string from the defined array of
        // characters including numeric and alphabetic characters.
        result = RandomStringUtils.random(32, 0, 20, true, true, "qw32rfHIJk9iQ8Ud7h0X".toCharArray());
        System.out.println("random = " + result);

    }
}
RandomStringUtils 类的实现上也是依赖了 java.util.Random 工具类:都给你整理好了,Java各种随机方式对比_随机数生成器

 

都给你整理好了,Java各种随机方式对比_i++_02都给你整理好了,Java各种随机方式对比_i++_02都给你整理好了,Java各种随机方式对比_随机数_04都给你整理好了,Java各种随机方式对比_均匀分布_05