上篇我们介绍完了fail-fast 机制,下面我们将接着介绍List的另一个实现类​​LinkedList​​​。
我们将从以下几个方面介绍

  1. ​LinkedList​​的介绍
  2. ​LinkedList​​的数据结构
  3. ​LinkedList​​的源码分析(基于JDK1.8)
  4. ​LinkedList​​的遍历方式
  5. ​LinkedList​​的示例
  6. ​ArrayList​​​与​​LinkedList​​的区别

​LinkedList​​的介绍

​LinkedList​​的定义

public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable{}
  1. ​LinkedList​​​是一个继承于​​AbstractSequentialList​​的双向链表,可以被当作堆栈,双向队列,队列进行操作。
  2. ​LinkedList​​​实现了​​List​​,可以被当作队列进行操作。
  3. ​LinkedList​​​ 实现了​​Deque​​,可以被当作双向队列进行操作。
  4. ​LinkedList​​​实现了​​Cloneable​​,可以被克隆。
  5. ​LinkedList​​​实现了​​java.io.Serializable​​,可以被序列化
  6. ​LinkedList​​是线程不安全的

PS:

​LinkedList​​的数据结构

​LinkedList​​的API

LinkedList的API
boolean add(E object)
void add(int location, E object)
boolean addAll(Collection<? extends E> collection)
boolean addAll(int location, Collection<? extends E> collection)
void addFirst(E object)
void addLast(E object)
void clear()
Object clone()
boolean contains(Object object)
Iterator<E> descendingIterator()
E element()
E get(int location)
E getFirst()
E getLast()
int indexOf(Object object)
int lastIndexOf(Object object)
ListIterator<E> listIterator(int location)
boolean offer(E o)
boolean offerFirst(E e)
boolean offerLast(E e)
E peek()
E peekFirst()
E peekLast()
E poll()
E pollFirst()
E pollLast()
E pop()
void push(E e)
E remove()
E remove(int location)
boolean remove(Object object)
E removeFirst()
boolean removeFirstOccurrence(Object o)
E removeLast()
boolean removeLastOccurrence(Object o)
E set(int location, E object)
int size()
<T> T[] toArray(T[] contents)
Object[] toArray()

​LinkedList​​的类图如下

Java 集合框架05-LinkedList的详细介绍_双向链表
​​​LinkedList​​​ 本质上是一个双向链表。
​​​LinkedList​​​ 包含两个重要的成员 ​​header​​​和​​size​​​。
​​​header​​​是双向链表的表头,是双向链表节点所对应的类Entry的实例。Entry中包含成员变量: previous, next, element。其中,previous是该节点的上一个节点,next是该节点的下一个节点,element是该节点所包含的值。
  size是双向链表中节点的个数。

LinkedList源码解析(基于jdk 1.8)

为了更好的了解​​LinkedList​​​的原理,下面我们对​​LinkedList​​​的源码进行分析下。
在阅读源码之前,我们先对​​​LinkedList​​​的整体实现进行大致说明:
LinkedList 实际上是通过双向链表去实现的。既然是双向链表,那么它的顺序访问会非常高效,随机访问效率比较低。
既然​​​LinkedList​​​是通过双向链表的,但是它也实现了List 接口(也就是说它实现了​​get(int index)​​​和​​remove(int index)​​​ 等通过索引值来获取,移除节点的函数)。
​​​LinkedList​​​ 是如何实现​​List​​的这些接口的,如何将双向链表和索引值联系起来的
实际原理是,它是通过一个计数索引值来实现的,例如,当我们调用​​get(int index)​​​时,首先​​index​​与双向链表长度的1/2 进行比较。如果前者大,则从链表头开始往后查找,直到找到​​location​​​位置;否则,从链表末尾开始先前查找,直到找到​​location​​​位置。
这就是双向链表好索引值联系起来的方法。
接下来开始阅读源码

public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
transient int size = 0;

/**
* Pointer to first node.(定义第一个节点)
* Invariant: (first == null && last == null) ||
* (first.prev == null && first.item != null)
*/
transient Node<E> first;

/**
* Pointer to last node.(定义最后一个节点)
* Invariant: (first == null && last == null) ||
* (last.next == null && last.item != null)
*/
transient Node<E> last;

/**
* Constructs an empty list.(初始化一个空的list)
*/
public LinkedList() {
}

/**
* Constructs a list containing the elements of the specified
* collection, in the order they are returned by the collection's
* iterator.
* 包含“集合”的构造函数,创建一个包含"集合"的LinkedList
* @param c the collection whose elements are to be placed into this list
* @throws NullPointerException if the specified collection is null
*/
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}

/**
* 获取第一个元素
* Links e as first element.
*/
private void linkFirst(E e) {
final Node<E> f = first;
final Node<E> newNode = new Node<>(null, e, f);
first = newNode;
if (f == null)
last = newNode;
else
f.prev = newNode;
size++;
modCount++;
}

/**
* 获取最后一个元素
* Links e as last element.
*/
void linkLast(E e) {
final Node<E> l = last;
final Node<E> newNode = new Node<>(l, e, null);
last = newNode;
if (l == null)
first = newNode;
else
l.next = newNode;
size++;
modCount++;
}

/**
* Inserts element e before non-null Node succ.
* 在节点succ之前增加元素
*/
void linkBefore(E e, Node<E> succ) {
// assert succ != null;
final Node<E> pred = succ.prev;
final Node<E> newNode = new Node<>(pred, e, succ);
succ.prev = newNode;
if (pred == null)
first = newNode;
else
pred.next = newNode;
size++;
modCount++;
}

/**
* Unlinks non-null first node f.
*
*/
private E unlinkFirst(Node<E> f) {
// assert f == first && f != null;
final E element = f.item;
final Node<E> next = f.next;
f.item = null;
f.next = null; // help GC
first = next;
if (next == null)
last = null;
else
next.prev = null;
size--;
modCount++;
return element;
}

/**
* Unlinks non-null last node l.
*/
private E unlinkLast(Node<E> l) {
// assert l == last && l != null;
final E element = l.item;
final Node<E> prev = l.prev;
l.item = null;
l.prev = null; // help GC
last = prev;
if (prev == null)
first = null;
else
prev.next = null;
size--;
modCount++;
return element;
}

/**
* Unlinks non-null node x.
*/
E unlink(Node<E> x) {
// assert x != null;
final E element = x.item;
final Node<E> next = x.next;
final Node<E> prev = x.prev;

if (prev == null) {
first = next;
} else {
prev.next = next;
x.prev = null;
}

if (next == null) {
last = prev;
} else {
next.prev = prev;
x.next = null;
}

x.item = null;
size--;
modCount++;
return element;
}

/**
* Returns the first element in this list.
* 返回该集合的第一个元素
* @return the first element in this list
* @throws NoSuchElementException if this list is empty
*/
public E getFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return f.item;
}

/**
* Returns the last element in this list.
* 返回该集合的最后一个元素
* @return the last element in this list
* @throws NoSuchElementException if this list is empty
*/
public E getLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return l.item;
}

/**
* Removes and returns the first element from this list.
* 从集合中移除掉第一个元素
* @return the first element from this list
* @throws NoSuchElementException if this list is empty
*/
public E removeFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return unlinkFirst(f);
}

/**
* Removes and returns the last element from this list.
* 从集合中移除掉最后一个元素
* @return the last element from this list
* @throws NoSuchElementException if this list is empty
*/
public E removeLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return unlinkLast(l);
}

/**
* Inserts the specified element at the beginning of this list.
* 从该集合中插入一个元素,插入为第一个
* @param e the element to add
*/
public void addFirst(E e) {
linkFirst(e);
}

/**
* Appends the specified element to the end of this list.
* 从该集合中插入一个元素,插入为最后一个
* <p>This method is equivalent to {@link #add}.
*
* @param e the element to add
*/
public void addLast(E e) {
linkLast(e);
}

/**
* Returns {@code true} if this list contains the specified element.
* 查找集合中是否某元素
*/
public boolean contains(Object o) {
return indexOf(o) != -1;
}

/**
* Returns the number of elements in this list.
* 返回集合的大小
* @return the number of elements in this list
*/
public int size() {
return size;
}

/**
* Appends the specified element to the end of this list.
* 将元素添加到集合尾部
*/
public boolean add(E e) {
linkLast(e);
return true;
}

/**
* Removes the first occurrence of the specified element from this list,
* if it is present. If this list does not contain the element, it is
* unchanged. More formally, removes the element with the lowest index
* {@code i} such that
* 从集合中移除某个元素
*/
public boolean remove(Object o) {
if (o == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null) {
unlink(x);
return true;
}
}
} else {
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item)) {
unlink(x);
return true;
}
}
}
return false;
}

/**
* Appends all of the elements in the specified collection to the end of
* this list, in the order that they are returned by the specified
* collection's iterator. The behavior of this operation is undefined if
* the specified collection is modified while the operation is in
* progress. (Note that this will occur if the specified collection is
* this list, and it's nonempty.)
* 将Collection c 添加到该集合中,添加到集合尾部
*/
public boolean addAll(Collection<? extends E> c) {
return addAll(size, c);
}

/**
* Inserts all of the elements in the specified collection into this
* list, starting at the specified position. Shifts the element
* currently at that position (if any) and any subsequent elements to
* the right (increases their indices). The new elements will appear
* in the list in the order that they are returned by the
* specified collection's iterator.
* 将Collection c 添加到该集合中,添加到集合指定位置
*/
public boolean addAll(int index, Collection<? extends E> c) {
checkPositionIndex(index);

Object[] a = c.toArray();
int numNew = a.length;
if (numNew == 0)
return false;

Node<E> pred, succ;
if (index == size) {
succ = null;
pred = last;
} else {
succ = node(index);
pred = succ.prev;
}

for (Object o : a) {
@SuppressWarnings("unchecked") E e = (E) o;
Node<E> newNode = new Node<>(pred, e, null);
if (pred == null)
first = newNode;
else
pred.next = newNode;
pred = newNode;
}

if (succ == null) {
last = pred;
} else {
pred.next = succ;
succ.prev = pred;
}

size += numNew;
modCount++;
return true;
}

/**
* Removes all of the elements from this list.
* The list will be empty after this call returns.
* 从集合中移除掉所有元素
*/
public void clear() {
for (Node<E> x = first; x != null; ) {
Node<E> next = x.next;
x.item = null;
x.next = null;
x.prev = null;
x = next;
}
first = last = null;
size = 0;
modCount++;
}


// Positional Access Operations

/**
* Returns the element at the specified position in this list.
* 返回元素在集合中的位置
* @param index index of the element to return
* @return the element at the specified position in this list
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E get(int index) {
checkElementIndex(index);
return node(index).item;
}

/**
* Replaces the element at the specified position in this list with the
* specified element.
* 替换指定位置的元素的值
*/
public E set(int index, E element) {
checkElementIndex(index);
Node<E> x = node(index);
E oldVal = x.item;
x.item = element;
return oldVal;
}

/**
* Inserts the specified element at the specified position in this list.
* Shifts the element currently at that position (if any) and any
* subsequent elements to the right (adds one to their indices).
* 将元素添加到集合中的指定位置
*/
public void add(int index, E element) {
checkPositionIndex(index);

if (index == size)
linkLast(element);
else
linkBefore(element, node(index));
}

/**
* Removes the element at the specified position in this list. Shifts any
* subsequent elements to the left (subtracts one from their indices).
* Returns the element that was removed from the list.
* 移除指定位置的元素
*/
public E remove(int index) {
checkElementIndex(index);
return unlink(node(index));
}

/**
* Tells if the argument is the index of an existing element.
*/
private boolean isElementIndex(int index) {
return index >= 0 && index < size;
}

/**
* Tells if the argument is the index of a valid position for an
* iterator or an add operation.
*/
private boolean isPositionIndex(int index) {
return index >= 0 && index <= size;
}

/**
* Constructs an IndexOutOfBoundsException detail message.
* Of the many possible refactorings of the error handling code,
* this "outlining" performs best with both server and client VMs.
*/
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+size;
}

private void checkElementIndex(int index) {
if (!isElementIndex(index))
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}

private void checkPositionIndex(int index) {
if (!isPositionIndex(index))
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}

/**
* Returns the (non-null) Node at the specified element index.
*
*/
Node<E> node(int index) {
// assert isElementIndex(index);

if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}

// Search Operations

/**
* Returns the index of the first occurrence of the specified element
* in this list, or -1 if this list does not contain the element.
* More formally, returns the lowest index {@code i} such that
* <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
* or -1 if there is no such index.
*
* @param o element to search for
* @return the index of the first occurrence of the specified element in
* this list, or -1 if this list does not contain the element
*/
public int indexOf(Object o) {
int index = 0;
if (o == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null)
return index;
index++;
}
} else {
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item))
return index;
index++;
}
}
return -1;
}

/**
* Returns the index of the last occurrence of the specified element
* in this list, or -1 if this list does not contain the element.
* More formally, returns the highest index {@code i} such that
* <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
* or -1 if there is no such index.
*
* @param o element to search for
* @return the index of the last occurrence of the specified element in
* this list, or -1 if this list does not contain the element
*/
public int lastIndexOf(Object o) {
int index = size;
if (o == null) {
for (Node<E> x = last; x != null; x = x.prev) {
index--;
if (x.item == null)
return index;
}
} else {
for (Node<E> x = last; x != null; x = x.prev) {
index--;
if (o.equals(x.item))
return index;
}
}
return -1;
}

// Queue operations.

/**
* Retrieves, but does not remove, the head (first element) of this list.
*
* @return the head of this list, or {@code null} if this list is empty
* @since 1.5
*/
public E peek() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}

/**
* Retrieves, but does not remove, the head (first element) of this list.
*
* @return the head of this list
* @throws NoSuchElementException if this list is empty
* @since 1.5
*/
public E element() {
return getFirst();
}

/**
* Retrieves and removes the head (first element) of this list.
*
* @return the head of this list, or {@code null} if this list is empty
* @since 1.5
*/
public E poll() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}

/**
* Retrieves and removes the head (first element) of this list.
*
* @return the head of this list
* @throws NoSuchElementException if this list is empty
* @since 1.5
*/
public E remove() {
return removeFirst();
}

/**
* Adds the specified element as the tail (last element) of this list.
*
* @param e the element to add
* @return {@code true} (as specified by {@link Queue#offer})
* @since 1.5
*/
public boolean offer(E e) {
return add(e);
}

// Deque operations
/**
* Inserts the specified element at the front of this list.
*
* @param e the element to insert
* @return {@code true} (as specified by {@link Deque#offerFirst})
* @since 1.6
*/
public boolean offerFirst(E e) {
addFirst(e);
return true;
}

/**
* Inserts the specified element at the end of this list.
*
* @param e the element to insert
* @return {@code true} (as specified by {@link Deque#offerLast})
* @since 1.6
*/
public boolean offerLast(E e) {
addLast(e);
return true;
}

/**
* Retrieves, but does not remove, the first element of this list,
* or returns {@code null} if this list is empty.
*
* @return the first element of this list, or {@code null}
* if this list is empty
* @since 1.6
*/
public E peekFirst() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}

/**
* Retrieves, but does not remove, the last element of this list,
* or returns {@code null} if this list is empty.
*
* @return the last element of this list, or {@code null}
* if this list is empty
* @since 1.6
*/
public E peekLast() {
final Node<E> l = last;
return (l == null) ? null : l.item;
}

/**
* Retrieves and removes the first element of this list,
* or returns {@code null} if this list is empty.
*
* @return the first element of this list, or {@code null} if
* this list is empty
* @since 1.6
*/
public E pollFirst() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}

/**
* Retrieves and removes the last element of this list,
* or returns {@code null} if this list is empty.
*
* @return the last element of this list, or {@code null} if
* this list is empty
* @since 1.6
*/
public E pollLast() {
final Node<E> l = last;
return (l == null) ? null : unlinkLast(l);
}

/**
* Pushes an element onto the stack represented by this list. In other
* words, inserts the element at the front of this list.
*
* <p>This method is equivalent to {@link #addFirst}.
*
* @param e the element to push
* @since 1.6
*/
public void push(E e) {
addFirst(e);
}

/**
* Pops an element from the stack represented by this list. In other
* words, removes and returns the first element of this list.
*
* <p>This method is equivalent to {@link #removeFirst()}.
*
* @return the element at the front of this list (which is the top
* of the stack represented by this list)
* @throws NoSuchElementException if this list is empty
* @since 1.6
*/
public E pop() {
return removeFirst();
}

/**
* Removes the first occurrence of the specified element in this
* list (when traversing the list from head to tail). If the list
* does not contain the element, it is unchanged.
*
* @param o element to be removed from this list, if present
* @return {@code true} if the list contained the specified element
* @since 1.6
*/
public boolean removeFirstOccurrence(Object o) {
return remove(o);
}

/**
* Removes the last occurrence of the specified element in this
* list (when traversing the list from head to tail). If the list
* does not contain the element, it is unchanged.
*
* @param o element to be removed from this list, if present
* @return {@code true} if the list contained the specified element
* @since 1.6
*/
public boolean removeLastOccurrence(Object o) {
if (o == null) {
for (Node<E> x = last; x != null; x = x.prev) {
if (x.item == null) {
unlink(x);
return true;
}
}
} else {
for (Node<E> x = last; x != null; x = x.prev) {
if (o.equals(x.item)) {
unlink(x);
return true;
}
}
}
return false;
}

/**
* Returns a list-iterator of the elements in this list (in proper
* sequence), starting at the specified position in the list.
* Obeys the general contract of {@code List.listIterator(int)}.<p>
*
* The list-iterator is <i>fail-fast</i>: if the list is structurally
* modified at any time after the Iterator is created, in any way except
* through the list-iterator's own {@code remove} or {@code add}
* methods, the list-iterator will throw a
* {@code ConcurrentModificationException}. Thus, in the face of
* concurrent modification, the iterator fails quickly and cleanly, rather
* than risking arbitrary, non-deterministic behavior at an undetermined
* time in the future.
*
* @param index index of the first element to be returned from the
* list-iterator (by a call to {@code next})
* @return a ListIterator of the elements in this list (in proper
* sequence), starting at the specified position in the list
* @throws IndexOutOfBoundsException {@inheritDoc}
* @see List#listIterator(int)
*/
public ListIterator<E> listIterator(int index) {
checkPositionIndex(index);
return new ListItr(index);
}

private class ListItr implements ListIterator<E> {
private Node<E> lastReturned;
private Node<E> next;
private int nextIndex;
private int expectedModCount = modCount;

ListItr(int index) {
// assert isPositionIndex(index);
next = (index == size) ? null : node(index);
nextIndex = index;
}

public boolean hasNext() {
return nextIndex < size;
}

public E next() {
checkForComodification();
if (!hasNext())
throw new NoSuchElementException();

lastReturned = next;
next = next.next;
nextIndex++;
return lastReturned.item;
}

public boolean hasPrevious() {
return nextIndex > 0;
}

public E previous() {
checkForComodification();
if (!hasPrevious())
throw new NoSuchElementException();

lastReturned = next = (next == null) ? last : next.prev;
nextIndex--;
return lastReturned.item;
}

public int nextIndex() {
return nextIndex;
}

public int previousIndex() {
return nextIndex - 1;
}

public void remove() {
checkForComodification();
if (lastReturned == null)
throw new IllegalStateException();

Node<E> lastNext = lastReturned.next;
unlink(lastReturned);
if (next == lastReturned)
next = lastNext;
else
nextIndex--;
lastReturned = null;
expectedModCount++;
}

public void set(E e) {
if (lastReturned == null)
throw new IllegalStateException();
checkForComodification();
lastReturned.item = e;
}

public void add(E e) {
checkForComodification();
lastReturned = null;
if (next == null)
linkLast(e);
else
linkBefore(e, next);
nextIndex++;
expectedModCount++;
}

public void forEachRemaining(Consumer<? super E> action) {
Objects.requireNonNull(action);
while (modCount == expectedModCount && nextIndex < size) {
action.accept(next.item);
lastReturned = next;
next = next.next;
nextIndex++;
}
checkForComodification();
}

final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
// 双向链表的节点所对应的数据结构。
// 包含3部分:上一节点,下一节点,当前节点值。
private static class Node<E> {
// 当前节点所对应的值
E item;
// 下一节点
Node<E> next;
//上一节点
Node<E> prev;
/**
* 链表节点的构造函数
*/
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}

/**
* @since 1.6
*/
public Iterator<E> descendingIterator() {
return new DescendingIterator();
}

/**
* Adapter to provide descending iterators via ListItr.previous
* 反向迭代器
*/
private class DescendingIterator implements Iterator<E> {
private final ListItr itr = new ListItr(size());
public boolean hasNext() {
return itr.hasPrevious();
}
public E next() {
return itr.previous();
}
public void remove() {
itr.remove();
}
}

@SuppressWarnings("unchecked")
private LinkedList<E> superClone() {
try {
return (LinkedList<E>) super.clone();
} catch (CloneNotSupportedException e) {
throw new InternalError(e);
}
}

/**
* Returns a shallow copy of this {@code LinkedList}. (The elements
* themselves are not cloned.)
* 克隆函数,返回LinkedList的克隆对象
*/
public Object clone() {
LinkedList<E> clone = superClone();

// Put clone into "virgin" state
clone.first = clone.last = null;
clone.size = 0;
clone.modCount = 0;

// Initialize clone with our elements
for (Node<E> x = first; x != null; x = x.next)
clone.add(x.item);

return clone;
}

/**
* Returns an array containing all of the elements in this list
* in proper sequence (from first to last element).
* 返回LinkedList的数组Object[]
*/
public Object[] toArray() {
Object[] result = new Object[size];
int i = 0;
for (Node<E> x = first; x != null; x = x.next)
result[i++] = x.item;
return result;
}

/**
* 返回LinkedList的模板数组。所谓模板数组,即可以将T设为任意的数据类型
*/
@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
// 若数组a的大小<LinkedList的元素个数,(意味着数组a不足以容纳LinkedList中的全部元素)
if (a.length < size)
a = (T[])java.lang.reflect.Array.newInstance(
a.getClass().getComponentType(), size);
int i = 0;
Object[] result = a;
for (Node<E> x = first; x != null; x = x.next)
result[i++] = x.item;

if (a.length > size)
a[size] = null;

return a;
}

private static final long serialVersionUID = 876323262645176354L;

/**
* Saves the state of this {@code LinkedList} instance to a stream
* (that is, serializes it).
*// java.io.Serializable的写入函数
* 将LinkedList的“容量,所有的元素值”都写入到输出流中
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
// Write out any hidden serialization magic
s.defaultWriteObject();

// Write out size
s.writeInt(size);

// Write out all elements in the proper order.
for (Node<E> x = first; x != null; x = x.next)
s.writeObject(x.item);
}

/**
* Reconstitutes this {@code LinkedList} instance from a stream
* (that is, deserializes it).
*/
@SuppressWarnings("unchecked")
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in any hidden serialization magic
s.defaultReadObject();

// Read in size
int size = s.readInt();

// Read in all elements in the proper order.
for (int i = 0; i < size; i++)
linkLast((E)s.readObject());
}
}

总结:

  1. LinkedList 实际上是通过双向链表来实现的。它包含一个非常重要内部类​​Node​​​
    ​​​Node​​​是​​LinkedList​​对应的数据结构,该数据结构包含的属性有:当前节点对应的值,上一节点,下一节点。
  2. 从​​LinkedList​​的实现来看,其不存在容量不足的问题
  3. ​LinkedList​​​的克隆函数,即是将所有元素克隆到一个新的​​LinkedList​​对象中。
  4. ​LinkedList​​​实现​​java.io.Serializable​​​,当写入输出流时,先写入容量,然后,写入每一个受保护的变量,读取输入流时,
    先读取容量,然后,读取每一个元素。
  1. 由于​​LinkedList​​​实现了​​Deque​​​,而​​Deque​​接口提供了在双端队列两端访问元素的方法,提供了插入,移除和检查元素的方法。每种方法都存在两种形式,一种形式在操作失败时抛出异常,一种形式是返回特殊的值(null或者false)。

引用