唯一ID可以标识数据的唯一性,在分布式系统中生成唯一ID的方案有很多,常见的方式大概有以下三种:
- 依赖数据库,使用如MySQL自增列或Oracle序列等
- UUID随机数
- snowflake雪花算法
一、数据库和UUID方案的不足之处
采用数据库自增序列:
- 读写分离时,只有主节点可以进行写操作,可能有单点故障的风险
- 分表分库,数据迁移合并等比较麻烦
UUID随机数:
- 采用无意义字符串,没有排序
- UUID使用字符串形式存储,数据量大时查询效率比较低
二、关于雪花算法
1. 组成结构
大致由:首位无效符、时间戳差值,机器(进程)编码,序列号四部分组成
2. 特点(自增、有序、适合分布式场景)
- 时间位:可以根据时间进行排序,有助于提高查询速度
- 机器id位:适用于分布式环境下对多节点的各个节点进行标识,可以具体根据节点数和部署情况设计划分机器位10位长度,如划分5位表示进程位等
- 序列号位:是一系列的自增id,可以支持同一节点同一毫秒生成多个ID序号,12位的计数序列号支持每个节点每毫秒产生4096个ID序号
snowflake算法可以根据项目情况以及自身需要进行一定的修改。
三、雪花算法的缺点
雪花算法在单机系统上ID是递增的,但是在分布式系统多节点的情况下,所有节点的时钟并不能保证不完全同步,所以有可能会出现不是全局递增的情况。
四、雪花算法代码实现
package com.lw.coodytest.snawflake;
/**
* @Classname SnakeFlake
* @Description Twitter的分布式自增ID雪花算法snowflake (Java)
* SnowFlake的结构如下(每部分用-分开):<br>
* 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 <br>
* 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br>
* 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)
* 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。
* 41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br>
* 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId<br>
* 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号<br>
* 加起来刚好64位,为一个Long型。<br>
* SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,
* 经测试,SnowFlake每秒能够产生26万ID左右。
* @Author lw
* @Date 2020-03-17 14:21
*/
public class SnowflakeIdWorker {
/**
* 开始时间截
*/
private static final long twepoch = 1420041600000L;
/**
* 机器id所占的位数
*/
private static final long workerIdBits = 5L;
/**
* 数据标识id所占的位数
*/
private static final long datacenterIdBits = 5L;
/**
* 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数)
*/
private static final long maxWorkerId = -1L ^ (-1L << workerIdBits);
/**
* 支持的最大数据标识id,结果是31
*/
private static final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
/**
* 序列在id中占的位数
*/
private static final long sequenceBits = 12L;
/**
* 机器ID向左移12位
*/
private static final long workerIdShift = sequenceBits;
/**
* 数据标识id向左移17位(12+5)
*/
private static final long datacenterIdShift = sequenceBits + workerIdBits;
/**
* 时间截向左移22位(5+5+12)
*/
private static final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
/**
* 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095)
*/
private static final long sequenceMask = -1L ^ (-1L << sequenceBits);
/**
* 工作机器ID(0~31)
*/
private long workerId;
/**
* 数据中心ID(0~31)
*/
private long datacenterId;
/**
* 毫秒内序列(0~4095)
*/
private long sequence = 0L;
/**
* 上次生成ID的时间截
*/
private long lastTimestamp = -1L;
/**
* 构造函数
*
* @param workerId 工作ID (0~31)
* @param datacenterId 数据中心ID (0~31)
*/
public SnowflakeIdWorker(long workerId, long datacenterId) {
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
this.workerId = workerId;
this.datacenterId = datacenterId;
}
/**
* 获得下一个ID (该方法是线程安全的)
*
* @return SnowflakeId
*/
public synchronized long nextId() {
long timestamp = timeGen();
//如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
if (timestamp < lastTimestamp) {
throw new RuntimeException(
String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
}
//如果是同一时间生成的,则进行毫秒内序列
if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask;
//毫秒内序列溢出
if (sequence == 0) {
//阻塞到下一个毫秒,获得新的时间戳
timestamp = tilNextMillis(lastTimestamp);
}
}
//时间戳改变,毫秒内序列重置
else {
sequence = 0L;
}
//上次生成ID的时间截
lastTimestamp = timestamp;
//移位并通过或运算拼到一起组成64位的ID
return ((timestamp - twepoch) << timestampLeftShift)
| (datacenterId << datacenterIdShift)
| (workerId << workerIdShift)
| sequence;
}
/**
* 阻塞到下一个毫秒,直到获得新的时间戳
*
* @param lastTimestamp 上次生成ID的时间截
* @return 当前时间戳
*/
protected long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}
/**
* 返回以毫秒为单位的当前时间
*
* @return 当前时间(毫秒)
*/
protected long timeGen() {
return System.currentTimeMillis();
}
public static void main(String[] args) {
SnowflakeIdWorker idWorker = new SnowflakeIdWorker(0, 0);
for (int i = 0; i < 1000; i++) {
long id = idWorker.nextId();
System.out.println(Long.toBinaryString(id));
System.out.println(id);
}
}
}