G - B-number
Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

A wqb-number, or B-number for short, is a non-negative integer whose decimal form contains the sub- string "13" and can be divided by 13. For example, 130 and 2613 are wqb-numbers, but 143 and 2639 are not. Your task is to calculate how many wqb-numbers from 1 to n for a given integer n.

Input

Process till EOF. In each line, there is one positive integer n(1 <= n <= 1000000000).

Output

Print each answer in a single line.

Sample Input

13
100
200
1000

Sample Output

1
1
2
2

F:

题意:找出1~n范围内含有13并且能被13整除的数字的个数

思路:使用记忆化深搜来记录状态,配合数位DP来解决

代码如下:

#include <stdio.h>  
#include <string.h>  
#include <algorithm>  
using namespace std;  
  
int bit[15];  
int dp[15][15][3];  
//dp[i][j][k]  
//i:数位  
//j:余数  
//k:3种操作状况,0:末尾不是1,1:末尾是1,2:含有13  
  
int dfs(int pos,int mod,int have,int lim)//lim记录上限  
{  
    int num,i,ans,mod_x,have_x;  
    if(pos<=0)  
        return mod == 0 && have == 2;  
    if(!lim && dp[pos][mod][have] != -1)//没有上限并且已被访问过  
        return dp[pos][mod][have];  
    num = lim?bit[pos]:9;//假设该位是2,下一位是3,如果现在算到该位为1,那么下一位是能取到9的,如果该位为2,下一位只能取到3  
    ans = 0;  
    for(i = 0; i<=num; i++)  
    {  
        mod_x = (mod*10+i)%13;//看是否能整除13,而且由于是从原来数字最高位开始算,细心的同学可以发现,事实上这个过程就是一个除法过程  
        have_x = have;  
        if(have == 0 && i == 1)//末尾不是1,现在加入的是1  
            have_x = 1;//标记为末尾是1  
        if(have == 1 && i != 1)//末尾是1,现在加入的不是1  
            have_x = 0;//标记为末尾不是1  
        if(have == 1 && i == 3)//末尾是1,现在加入的是3  
            have_x = 2;//标记为含有13  
        ans+=dfs(pos-1,mod_x,have_x,lim&&i==num);//lim&&i==num,在最开始,取出的num是最高位,所以如果i比num小,那么i的下一位都可以到达9,而i==num了,最大能到达的就只有,bit[pos-1]  
    }  
    if(!lim)  
        dp[pos][mod][have] = ans;  
    return ans;  
}  
  
int main()  
{  
    int n,len;  
    while(~scanf("%d",&n))  
    {  
        memset(bit,0,sizeof(bit));  
        memset(dp,-1,sizeof(dp));  
        len = 0;  
        while(n)  
        {  
            bit[++len] = n%10;  
            n/=10;  
        }  
        printf("%d\n",dfs(len,0,0,1));  
    }  
  
    return 0;  
}