首先配置hadoop集群
完成之后
下载spark2.0.1-hadoop-1.6.0编译好的
解压缩,上传到master节点
配置 Spark
cd ~/workspace/spark-1.3.0/conf #进入spark配置目录
cp spark-env.sh.template spark-env.sh #从配置模板复制
vi spark-env.sh #添加配置内容
在spark-env.sh末尾添加以下内容(这是我的配置,你可以自行修改):
export SCALA_HOME=/home/spark/workspace/scala-2.10.4
export JAVA_HOME=/home/spark/workspace/jdk1.7.0_75
export HADOOP_HOME=/home/spark/workspace/hadoop-2.6.0
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
SPARK_MASTER_IP=master
SPARK_LOCAL_DIRS=/home/spark/workspace/spark-1.3.0
SPARK_DRIVER_MEMORY=1G
注:在设置Worker进程的CPU个数和内存大小,要注意机器的实际硬件条件,如果配置的超过当前Worker节点的硬件条件,Worker进程会启动失败。
vi slaves在slaves文件下填上slave主机名:
slave1
slave2
将配置好的spark-1.3.0文件夹分发给所有slaves吧
scp -r ~/workspace/spark-1.3.0 spark@slave1:~/workspace/
启动Spark
sbin/start-all.sh
验证 Spark 是否安装成功
用jps检查,在 master 上应该有以下几个进程:
$ jps
7949 Jps
7328 SecondaryNameNode
7805 Master
7137 NameNode
7475 ResourceManager
在 slave 上应该有以下几个进程:
$jps
3132 DataNode
3759 Worker
3858 Jps
3231 NodeManager
http://wuchong.me/blog/2015/04/04/spark-on-yarn-cluster-deploy/
进入官方下载地址下载最新版 Spark。我下载的是 spark-1.3.0-bin-hadoop2.4.tgz。
在~/workspace目录下解压
tar -zxvf spark-1.3.0-bin-hadoop2.4.tgz
mv spark-1.3.0-bin-hadoop2.4 spark-1.3.0 #原来的文件名太长了,修改下
配置 Spark
cd ~/workspace/spark-1.3.0/conf #进入spark配置目录
cp spark-env.sh.template spark-env.sh #从配置模板复制
vi spark-env.sh #添加配置内容
在spark-env.sh末尾添加以下内容(这是我的配置,你可以自行修改):
export SCALA_HOME=/home/spark/workspace/scala-2.10.4
export JAVA_HOME=/home/spark/workspace/jdk1.7.0_75
export HADOOP_HOME=/home/spark/workspace/hadoop-2.6.0
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
SPARK_MASTER_IP=master
SPARK_LOCAL_DIRS=/home/spark/workspace/spark-1.3.0
SPARK_DRIVER_MEMORY=1G
注:在设置Worker进程的CPU个数和内存大小,要注意机器的实际硬件条件,如果配置的超过当前Worker节点的硬件条件,Worker进程会启动失败。
vi slaves在slaves文件下填上slave主机名:
slave1
slave2
将配置好的spark-1.3.0文件夹分发给所有slaves吧
scp -r ~/workspace/spark-1.3.0 spark@slave1:~/workspace/
启动Spark
sbin/start-all.sh
验证 Spark 是否安装成功
用jps检查,在 master 上应该有以下几个进程:
$ jps
7949 Jps
7328 SecondaryNameNode
7805 Master
7137 NameNode
7475 ResourceManager
在 slave 上应该有以下几个进程:
$jps
3132 DataNode
3759 Worker
3858 Jps
3231 NodeManager
进入Spark的Web管理页面: http://master:8080