什么是Explain
使用EXPLAIN关键字可以模拟优化器执行SQL语句,分析你的查询语句或是结构的性能瓶颈
在 select 语句之前增加 explain 关键字,MySQL 会在查询上设置一个标记,执行查询会返回执行计划的信息,而不是执行这条SQL
Explain列段说明
我们先用Explain随便执行一条SQL
explain select * from actor;
它的结果如下,我们就是根据这些字段去分析这条SQL的构成,然后对SQL进行优化,下面分别来解释每一个字段的意思
id列
id列的编号是 select 的序列号,有几个 select 就有几个id,并且id的顺序是按 select 出现的顺序增长的。
在查询中的每个表会输出一行,如果有两个表通过 join 连接查询,那么会输出两行
id列越大执行优先级越高,id相同则从上往下执行,id为NULL最后执行。
select_type列
select_type 表示对应行是简单还是复杂的查询。
- simple:简单查询。查询不包含子查询和union ,例如
explain select * from film where id = 2;
- primary:复杂查询中最外层的 select
- subquery:包含在 select 中的子查询(不在 from 子句中)
- derived:包含在 from 子句中的子查询。MySQL会将结果存放在一个临时表中,也称为派生表(derived的英文含义)
用这个例子来了解 primary、subquery 和 derived 类型
set session optimizer_switch='derived_merge=off'; #关闭mysql5.7新特性对衍生表的合并优化
explain select (select 1 from actor where id = 1) from (select * from film where id = 1) der;
执行结果如下
- union:在 union 中的第二个和随后的 select
explain select 1 union all select 1;
table列
这一列表示 explain 的一行正在访问哪个表。 当 from 子句中有子查询时,table列是
格式,表示当前查询依赖 id=N 的查询,于是先执行 id=N 的查询。 当有 union 时,UNION RESULT 的 table
列的值为<union1,2>,1和2表示参与 union 的 select 行id。
type列(重点)
这一列表示关联类型或访问类型,即MySQL决定如何查找表中的行,查找数据行记录的大概范围。
依次从最优到最差分别为:system > const > eq_ref > ref > range > index > ALL
const, system:用于 primary key 或 unique key 的所有列与常数比较时,所以表最多有一个匹配行,读取1次,速度比较快。system是const的特例,表里只有一条元组匹配时为system,基本用不上
eq_ref:primary key 或 unique key 索引的所有部分被连接使用 ,最多只会返回一条符合条件的记录。这可能是在 const 之外最好的联接类型了,简单的 select 查询不会出现这种 type。
explain select * from film_actor left join film on film_actor.film_id = film.id;
ref:相比 eq_ref,不使用唯一索引,而是使用普通索引或者唯一性索引的部分前缀,索引要和某个值相比较,可能会找到多个符合条件的行。
- 简单 select 查询,name是普通索引(非唯一索引)
explain select * from film where name = 'film1';
- 关联表查询,idx_film_actor_id是film_id和actor_id的联合索引,这里使用到了film_actor的左边前缀film_id部分。
explain select film_id from film left join film_actor on film.id = film_actor.film_id;
range:范围扫描通常出现在 in(), between ,> ,<, >= 等操作中。使用一个索引来检索给定范围的行。
explain select * from actor where id > 1;
index:扫描全索引就能拿到结果,一般是扫描某个二级索引,这种扫描不会从索引树根节点开始快速查找,而是直接对二级索引的叶子节点遍历和扫描,速度还是比较慢的,这种查询一般为使用覆盖索引,二级索引一般比较小,所以这种通常比ALL快一些。
explain select * from film;
ALL:即全表扫描,扫描你的聚簇索引的所有叶子节点。通常情况下这需要增加索引来进行优化了。
explain select * from actor;
possible_keys列
这一列显示查询可能使用哪些索引来查找。 explain 时可能出现 possible_keys 有列,而 key 显示 NULL
的情况,这种情况是因为表中数据不多,mysql认为索引对此查询帮助不大,选择了全表查询。
如果该列是NULL,则没有相关的索引。在这种情况下,可以通过检查 where 子句看是否可以创造一个适当的索引来提高查询性能,然后用
explain 查看效果。
key列(重点)
这一列显示mysql实际采用哪个索引来优化对该表的访问。 如果没有使用索引,则该列是
NULL。如果想强制mysql使用或忽视possible_keys列中的索引,在查询中使用 force index、ignore
index。
key_len列(重点)
这一列显示了mysql在索引里使用的字节数,通过这个值可以算出具体使用了索引中的哪些列。
举例来说,film_actor的联合索引 idx_film_actor_id 由 film_id 和 actor_id 两个int列组成,并且每个int是4字节。通过结果中的key_len=4可推断出查询使用了第一个列:film_id列来执行索引查找。
explain select * from film_actor where film_id = 2;
key_len计算规则如下:
字符串,char(n)和varchar(n),5.0.3以后版本中,n均代表字符数,而不是字节数,如果是utf-8,一个数字或字母占1个字节,一个汉字占3个字节
- char(n):如果存汉字长度就是 3n 字节
- varchar(n):如果存汉字则长度是 3n + 2 字节,加的2字节用来存储字符串长度,因为varchar是变长字符串 数值类型
- tinyint:1字节
- smallint:2字节
- int:4字节
- bigint:8字节
- date:3字节
- timestamp:4字节
- datetime:8字节
如果字段允许为 NULL,需要1字节记录是否为 NULL
索引最大长度是768字节,当字符串过长时,mysql会做一个类似左前缀索引的处理,将前半部分的字符提取出来做索引。
ref列
这一列显示了在key列记录的索引中,表查找值所用到的列或常量,常见的有:const(常量),字段名(例:film.id)
rows列(重点)
这一列是mysql估计要读取并检测的行数,注意这个不是结果集里的行数。这里有一个认知误区,并不是检索的行数越多执行速度一定越慢,这和SQL使用索引和整个执行过程的回表次数都有关系
Extra列
这一列展示的是额外信息。常见的重要值如下:
1.Using index:使用覆盖索引
覆盖索引定义:mysql执行计划explain结果里的key有使用索引,如果select后面查询的字段都可以从这个索引的树中获取,这种情况一般可以说是用到了覆盖索引,extra里一般都有using index;覆盖索引一般针对的是辅助索引,整个查询结果只通过辅助索引就能拿到结果,不需要通过辅助索引树找到主键,再通过主键去主键索引树里获取其它字段值
explain select film_id from film_actor where film_id = 1;
2.Using where:使用 where 语句来处理结果,并且查询的列未被索引覆盖
3.Using index condition:查询的列不完全被索引覆盖,where条件中是一个前导列的范围;
explain select * from film_actor where film_id > 1;
4.Using temporary:mysql需要创建一张临时表来处理查询。出现这种情况一般是要进行优化的,首先是想到用索引来优化。
例如:
actor.name没有索引,此时创建了张临时表来distinct
explain select distinct name from actor;
film.name建立了idx_name索引,此时查询时extra是using index,没有用临时表
explain select distinct name from film;
5.Using filesort:将用外部排序而不是索引排序,数据较小时从内存排序,否则需要在磁盘完成排序。这种情况下一般也是要考虑使用索引来优化的。
案例中使用的表结构
DROP TABLE IF EXISTS `actor`;
CREATE TABLE `actor` (
`id` int(11) NOT NULL,
`name` varchar(45) DEFAULT NULL,
`update_time` datetime DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
INSERT INTO `actor` (`id`, `name`, `update_time`) VALUES (1,'a','2017-12-22 15:27:18'), (2,'b','2017-12-22 15:27:18'), (3,'c','2017-12-22 15:27:18');
DROP TABLE IF EXISTS `film`;
CREATE TABLE `film` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`name` varchar(10) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `idx_name` (`name`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
INSERT INTO `film` (`id`, `name`) VALUES (3,'film0'),(1,'film1'),(2,'film2');
DROP TABLE IF EXISTS `film_actor`;
CREATE TABLE `film_actor` (
`id` int(11) NOT NULL,
`film_id` int(11) NOT NULL,
`actor_id` int(11) NOT NULL,
`remark` varchar(255) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `idx_film_actor_id` (`film_id`,`actor_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
INSERT INTO `film_actor` (`id`, `film_id`, `actor_id`) VALUES (1,1,1),(2,1,2),(3,2,1);
Explain的使用并不复杂,它也不能直接对SQL进行优化,它主要的功能是帮助我们分析、定位SQL存在的问题,更多是在实战中的运用。
下面会结合实战来具体体现我们的Explain如何使用
end…