subject1k和subject1v的形状相同
# -*- coding: utf-8 -*- import scipy.io as sio raw_K = sio.loadmat('Subject1K.mat') raw_V = sio.loadmat('Subject1V.mat') k = raw_K['Subject1K'] v = raw_V['Subject1V'] ls_col=['r','g','b','orange'] import matplotlib.pyplot as plt import numpy as np # 画K figk = plt.figure() for i in range(9): # 第一维数大小为9 ax = figk.add_subplot(3,3,i+1) for j in range(4): # 针对一页中的四列分别画一条曲线 ax.plot(k[i,:,j],ls_col[j]) figk.show() # 画V figv = plt.figure() for i in range(9): ax = figv.add_subplot(3,3,i+1) for j in range(4): ax.plot(v[i,:,j],ls_col[j]) figv.show() #以3条曲线展示'Subject1K.mat'中内容的均值和标准差 fig_mean_k=plt.figure() for i in range(4): ax = fig_mean_k.add_subplot(2,2,i+1) #kk是一个101*9的矩阵 kk=k[:,:,i].T #求均值 ls_m = np.mean(kk,axis=1) #标准差 ls_std = np.std(kk,axis=1) ax.plot(ls_m,ls_col[i]) ax.plot(ls_m+ls_std,ls_col[i],linestyle='--') ax.plot(ls_m-ls_std,ls_col[i],linestyle='--') fig_mean_k.show()