OpenCV图像分割资料分享:贾志刚的OpenCV图像分割实战视频教程全套资料(包含配套视频、配套PPT的PDF文件、源码和用到的图片素材等)
实例4:GMM(高斯混合模型)样本数据训练与预言
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace cv::ml;
using namespace std;
int main(int argc, char** argv) {
Mat img = Mat::zeros(500, 500, CV_8UC3);
RNG rng(12345);
Scalar colorTab[] = {
Scalar(0, 0, 255),
Scalar(0, 255, 0),
Scalar(255, 0, 0),
Scalar(0, 255, 255),
Scalar(255, 0, 255)
};
int numCluster = rng.uniform(2, 5);
printf("number of clusters : %d\n", numCluster);
int sampleCount = rng.uniform(5, 1000);
Mat points(sampleCount, 2, CV_32FC1);
Mat labels;
// 生成随机数
for (int k = 0; k < numCluster; k++) {
Point center;
center.x = rng.uniform(0, img.cols);
center.y = rng.uniform(0, img.rows);
Mat pointChunk = points.rowRange(k*sampleCount / numCluster,
k == numCluster - 1 ? sampleCount : (k + 1)*sampleCount / numCluster);
rng.fill(pointChunk, RNG::NORMAL, Scalar(center.x, center.y), Scalar(img.cols*0.05, img.rows*0.05));
}
randShuffle(points, 1, &rng);
Ptr<EM> em_model = EM::create();
em_model->setClustersNumber(numCluster);
em_model->setCovarianceMatrixType(EM::COV_MAT_SPHERICAL);//协方差矩阵
//训练次数设置为100
em_model->setTermCriteria(TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 100, 0.1));
em_model->trainEM(points, noArray(), labels, noArray());
// classify every image pixels
Mat sample(1, 2, CV_32FC1);
for (int row = 0; row < img.rows; row++) {
for (int col = 0; col < img.cols; col++) {
sample.at<float>(0) = (float)col;
sample.at<float>(1) = (float)row;
int response = cvRound(em_model->predict2(sample, noArray())[1]);
Scalar c = colorTab[response];
circle(img, Point(col, row), 1, c*0.75, -1);
}
}
// draw the clusters
for (int i = 0; i < sampleCount; i++) {
Point p(cvRound(points.at<float>(i, 0)), points.at<float>(i, 1));
circle(img, p, 1, colorTab[labels.at<int>(i)], -1);
}
imshow("GMM-EM Demo", img);
waitKey(0);
return 0;
}