Gcd Product

C m = ∑ i = 1 m A gcd ⁡ ( i , m ) B gcd ⁡ ( k + 1 − i , m ) ∑ d 1 ∣ m A d 1 ∑ d 2 ∣ m B d 2 ∑ i = 1 m ( [ gcd ⁡ ( i d 1 , m d 1 ) = 1 ] [ d 1 ∣ i ] ) ( [ gcd ⁡ ( m + 1 − i d 2 , m d 2 ) = 1 ] [ d 2 ∣ m + 1 − i ] ) ∑ d 1 ∣ m A d 1 ∑ d 2 ∣ m B d 2 ∑ k 1 ∣ m d 1 μ ( k 1 ) ∑ k 2 ∣ m d 2 μ ( k 2 ) ∑ i = 1 m ( [ d 1 ∣ i ] [ k 1 ∣ i d 1 ] ) ( [ d 2 ∣ m + 1 − i ] [ k 2 ∣ m + 1 − i d 2 ] ) T 1 = d 1 × k 1 , T 2 = d 2 × k 2 ∑ T 1 ∣ m ∑ d 1 ∣ T 1 A d 1 μ ( T 1 d 1 ) ∑ T 2 ∣ m ∑ d 2 ∣ T 2 B d 2 μ ( T 2 d 2 ) ∑ i = 1 m [ T 1 ∣ i ] [ T 2 ∣ m + 1 − i ] C_m = \sum_{i = 1} ^{m} A_{\gcd(i, m)} B_{\gcd(k + 1 - i, m)}\\ \sum_{d1 \mid m} A_{d1} \sum_{d_2 \mid m}B_{d_2} \sum_{i = 1} ^{m}\left([\gcd(\frac{i}{d_1}, \frac{m}{d_1}) = 1][d_1 \mid i]\right)\left([\gcd(\frac{m + 1 - i}{d_2}, \frac{m}{d_2}) = 1][d_2 \mid m + 1 - i]\right)\\ \sum_{d_1 \mid m} A_{d_1} \sum_{d_2 \mid m} B_{d_2} \sum_{k_1 \mid \frac{m}{d_1}} \mu(k_1) \sum_{k_2 \mid \frac{m}{d_2}} \mu(k_2) \sum_{i = 1} ^{m} \left([d_1 \mid i][k_1 \mid \frac{i}{d_1}] \right)\left([d_2 \mid m + 1 - i][k_2 \mid \frac{m + 1 - i}{d_2}] \right)\\ T_1 = d_1 \times k_1, T_2 = d_2 \times k_2\\ \sum_{T_1 \mid m} \sum_{d_1 \mid T_1} A_{d_1} \mu(\frac{T_1}{d_1}) \sum_{T_2 \mid m} \sum_{d_2 \mid T_2} B_{d_2} \mu(\frac{T_2}{d_2}) \sum_{i = 1} ^{m} [T_1 \mid i][T_2 \mid m + 1 - i]\\ Cm=i=1mAgcd(i,m)Bgcd(k+1i,m)d1mAd1d2mBd2i=1m([gcd(d1i,d1m)=1][d1i])([gcd(d2m+1i,d2m)=1][d2m+1i])d1mAd1d2mBd2k1d1mμ(k1)k2d2mμ(k2)i=1m([d1i][k1d1i])([d2m+1i][k2d2m+1i])T1=d1×k1,T2=d2×k2T1md1T1Ad1μ(d1T1)T2md2T2Bd2μ(d2T2)i=1m[T1i][T2m+1i]
观察式子,不难发现 ∑ d 1 ∣ T 1 A d 1 μ ( T 1 d 1 ) , ∑ d 2 ∣ T 2 B d 2 μ ( T 2 d 2 ) \sum\limits_{d_1 \mid T_1} A_{d_1} \mu(\frac{T_1}{d_1}), \sum_{d_2 \mid T_2} B_{d_2} \mu(\frac{T_2}{d_2}) d1T1Ad1μ(d1T1),d2T2Bd2μ(d2T2),二者对于给定的 T 1 , T 2 T_1,T_2 T1,T2都是可以确定的,跟变量 m m m无关,

f ( n ) = ∑ d ∣ n A d μ ( n d ) , g ( n ) = ∑ d ∣ n B d μ ( n d ) f(n) = \sum\limits_{d \mid n} A_{d} \mu(\frac{n}{d}), g(n) = \sum_{d \mid n} B_{d} \mu(\frac{n}{d}) f(n)=dnAdμ(dn),g(n)=dnBdμ(dn),得到 ∑ T 1 ∣ m f ( T 1 ) ∑ T 2 ∣ m g ( T 2 ) ∑ i = 1 m [ T 1 ∣ i ] [ T 2 ∣ m + 1 − i ] \sum\limits_{T_1 \mid m} f(T_1) \sum\limits_{T_2 \mid m} g(T_2) \sum\limits_{i = 1} ^{m}[T_1 \mid i][T_2 \mid m + 1 - i] T1mf(T1)T2mg(T2)i=1m[T1i][T2m+1i]

接下来我们考虑化简 ∑ i = 1 m [ T 1 ∣ i ] [ T 2 ∣ m + 1 − i ] \sum\limits_{i = 1} ^{m} [T_1 \mid i][T_2 \mid m + 1 - i] i=1m[T1i][T2m+1i]

设 i = T 1 k 1 , m + 1 − i = T 2 k 2 设i = T_1 k_1, m + 1 - i = T_2 k_2 i=T1k1,m+1i=T2k2,则 T 1 k 1 + T 2 k 2 = m + 1 T_1 k_1 + T_2 k_2 = m + 1 T1k1+T2k2=m+1,可得:

同余方程 T 1 k 1 ≡ 1 ( m o d T 2 ) , T 2 k 2 ≡ 1 ( m o d T 1 ) T_1 k_1 \equiv 1 \pmod{T_2}, T_2 k_2 \equiv 1 \pmod{T_1} T1k11(modT2),T2k21(modT1)

T 1 ∣ i , T 2 ∣ m + 1 − i T_1 \mid i, T_2 \mid m + 1 - i T1i,T2m+1i,则 gcd ⁡ ( T 1 , T 2 ) ∣ i , gcd ⁡ ( T 1 , T 2 ) ∣ m + 1 − i \gcd(T_1, T_2) \mid i, \gcd(T_1, T_2) \mid m + 1 - i gcd(T1,T2)i,gcd(T1,T2)m+1i,所以 gcd ⁡ ( T 1 , T 2 ) ∣ m + 1 \gcd(T_1, T_2) \mid m + 1 gcd(T1,T2)m+1

T 1 ∣ m , T 2 ∣ m T_1 \mid m, T_2 \mid m T1m,T2m,则 gcd ⁡ ( T 1 , T 2 ) ∣ m \gcd(T_1, T_2) \mid m gcd(T1,T2)m,因为 g c d ( m , m + 1 ) = 1 gcd(m, m + 1) = 1 gcd(m,m+1)=1,所以有 g c d ( T 1 , T 2 ) = 1 gcd(T_1, T_2) = 1 gcd(T1,T2)=1

所以 k 1 , k 2 k_1, k_2 k1,k2,分别在膜 T 2 , T 1 T_2, T_1 T2,T1下有且只有唯一解 x 1 , x 2 x_1, x_2 x1,x2,有 x 1 T 1 < T 1 T 2 , x 2 T 2 < T 1 T 2 x_1 T_1 < T_1 T_2, x_2 T_2 < T_1 T_2 x1T1<T1T2,x2T2<T1T2

可得 x 1 T 1 + x 2 T 2 = T 1 T 2 + 1 x_1T_1 + x_2 T_2 = T_1T_2 + 1 x1T1+x2T2=T1T2+1,要使 k 1 T 1 + k 2 T 2 = m + 1 k_1T_1 + k_2 T_2 = m + 1 k1T1+k2T2=m+1

相当于在 x 1 T 1 + x 2 T 2 = T 1 T 2 + 1 x_1T_1 + x_2 T_2 = T_1T_2 + 1 x1T1+x2T2=T1T2+1的基础上给 x 1 T 1 , x 2 T 2 x_1T_1,x_2T_2 x1T1,x2T2组合分配,凑得 m − T 1 T 2 m - T_1 T_2 mT1T2

m = K T 1 T 2 m = KT_1T_2 m=KT1T2,所以解的个数就是 K = m T 1 T 2 K = \frac{m}{T_1T_2} K=T1T2m,则有:
C m = ∑ T 1 ∣ m f ( T 1 ) ∑ T 2 ∣ m g ( T 2 ) m T 1 T 2 [ gcd ⁡ ( T 1 , T 2 ) = 1 ] T = T 1 T 2 ∑ T ∣ m m T ∑ T 1 ∣ T f ( T 1 ) g ( T T 1 ) [ g c d ( T 1 , T T 2 ) = 1 ] C_m = \sum_{T_1 \mid m} f(T_1) \sum_{T_2 \mid m} g(T_2) \frac{m}{T_1T_2}[\gcd(T_1, T_2) = 1]\\ T = T_1 T_2\\ \sum_{T \mid m} \frac{m}{T} \sum_{T_1 \mid T} f(T_1) g(\frac{T}{T_1})[gcd(T_1, \frac{T}{T_2}) = 1]\\ Cm=T1mf(T1)T2mg(T2)T1T2m[gcd(T1,T2)=1]T=T1T2TmTmT1Tf(T1)g(T1T)[gcd(T1,T2T)=1]
先做一次迪利克雷卷积得到 f , g f, g f,g,再做一次互质迪利克雷卷积得到 ∑ T 1 ∣ T f ( T 1 ) g ( T T 1 ) [ g c d ( T 1 , T T 2 ) = 1 ] \sum\limits_{T_1 \mid T} f(T_1) g(\frac{T}{T_1})[gcd(T_1, \frac{T}{T_2}) = 1] T1Tf(T1)g(T1T)[gcd(T1,T2T)=1],最后迪利克雷卷积得到答案。

#include <bits/stdc++.h>

using namespace std;

const int N = 5e5 + 10, mod = 998244353;

int prime[N], mu[N], phi[N], A[N], B[N], f[N], g[N], h[N], ans[N], n, cnt;

bool st[N];

void init() {
  mu[1] = phi[1] = 1;
  for (int i = 2; i < N; i++) {
    if (!st[i]) {
      prime[++cnt] = i;
      mu[i] = mod - 1;
      phi[i] = i - 1;
    }
    for (int j = 1; j <= cnt && 1ll * i * prime[j] < N; j++) {
      st[i * prime[j]] = 1;
      if (i % prime[j] == 0) {
        phi[i * prime[j]] = phi[i] * prime[j];
        break;
      }
      phi[i * prime[j]] = phi[i] * (prime[j] - 1);
      mu[i * prime[j]] = mod - mu[i];
    }
  }
}

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
  init();
  scanf("%d", &n);
  for (int i = 1; i <= n; i++) {
    scanf("%d", &A[i]);
  }
  for (int i = 1; i <= n; i++) {
    scanf("%d", &B[i]);
  }
  for (int i = 1; i <= n; i++) {
    for (int j = i; j <= n; j += i) {
      f[j] = (f[j] + 1ll * A[i] * mu[j / i] % mod) % mod;
      g[j] = (g[j] + 1ll * B[i] * mu[j / i] % mod) % mod;
    }
  }
  for (int i = 1; i <= n; i++) {
    for (int j = i; j <= n; j += i) {
      if (1ll * phi[i] * phi[j / i] == phi[j]) {
        h[j] = (h[j] + 1ll * f[i] * g[j / i] % mod) % mod;
      }
    }
  }
  for (int i = 1; i <= n; i++) {
    for (int j = i; j <= n; j += i) {
      ans[j] = (ans[j] + 1ll * (j / i) * h[i] % mod) % mod;
    }
  }
  for (int i = 1; i <= n; i++) {
    ans[i] ^= ans[i - 1];
  }
  printf("%d\n", ans[n]);
  return 0;
}