#3551. [ONTAK2010]Peaks加强版
我们要求从一个点出发经过困难值小于等于 x x x的路径所能到达的山峰中第 k k k高的是什么。
考虑按照边权升序,建议 k r u s k a l kruskal kruskal重构树,然后倍增向上跳,找到困难值小于等于 x x x的深度最小的节点 u u u,
那么我们只要在 u u u的子树中询问第 k k k大即可,所以可以用主席树来写,依照 d f s dfs dfs序,对每个节点建立一颗主席树,然后在主席树上查找第 k k k大即可。
#include <bits/stdc++.h>
using namespace std;
const int N = 5e5 + 10;
int head[N], to[N], nex[N], cnt = 1;
int n, m, q, nn, a[N], ff[N], value[N], h[N];
int fa[N][21], l[N], r[N], rk[N], tot;
int root[N], ls[N << 7], rs[N << 7], sum[N << 7], num;
struct Res {
int u, v, w;
bool operator < (const Res &t) const {
return w < t.w;
}
}edge[N];
void add(int x, int y) {
to[cnt] = y;
nex[cnt] = head[x];
head[x] = cnt++;
}
void update(int &rt, int pre, int l, int r, int x, int v) {
rt = ++num;
ls[rt] = ls[pre], rs[rt] = rs[pre], sum[rt] = sum[pre] + v;
if (l == r) {
return ;
}
int mid = l + r >> 1;
if (x <= mid) {
update(ls[rt], ls[pre], l, mid, x, v);
}
else {
update(rs[rt], rs[pre], mid + 1, r, x, v);
}
}
int query(int L, int R, int l, int r, int k) {
if (l == r) {
return l;
}
int res = sum[ls[R]] - sum[ls[L]], mid = l + r >> 1;
if (res >= k) {
return query(ls[L], ls[R], l, mid, k);
}
else {
return query(rs[L], rs[R], mid + 1, r, k - res);
}
}
int find(int rt) {
return rt == ff[rt] ? rt : ff[rt] = find(ff[rt]);
}
void dfs(int rt, int f) {
fa[rt][0] = f, l[rt] = ++tot, rk[tot] = rt;
for (int i = 1; i <= 20; i++) {
fa[rt][i] = fa[fa[rt][i - 1]][i - 1];
}
for (int i = head[rt]; i; i = nex[i]) {
if (to[i] == f) {
continue;
}
dfs(to[i], rt);
}
r[rt] = tot;
}
void kruskal() {
for (int i = 1; i < N; i++) {
ff[i] = i;
}
sort(edge + 1, edge + 1 + m);
for (int i = 1, cur = 1; i <= m && cur < n; i++) {
int u = find(edge[i].u), v = find(edge[i].v);
if (u != v) {
cur++, nn++;
ff[u] = nn, ff[v] = nn;
value[nn] = edge[i].w;
add(nn, u), add(nn, v);
if (u <= n) {
value[u] = edge[i].w;
}
if (v <= n) {
value[v] = edge[i].w;
}
}
}
dfs(nn, 0);
}
int main() {
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
scanf("%d %d %d", &n, &m, &q);
for (int i = 1; i <= n; i++) {
scanf("%d", &h[i]);
a[i] = h[i];
}
nn = n;
for (int i = 1; i <= m; i++) {
scanf("%d %d %d", &edge[i].u, &edge[i].v, &edge[i].w);
}
kruskal();
int maxn = n;
sort(a + 1, a + 1 + maxn);
maxn = unique(a + 1, a + 1 + maxn) - (a + 1);
for (int i = 1; i <= n; i++) {
h[i] = lower_bound(a + 1, a + 1 + maxn, h[i]) - a;
}
for (int i = 1; i <= nn; i++) {
root[i] = root[i - 1];
if (rk[i] <= n) {
update(root[i], root[i], 1, maxn, h[rk[i]], 1);
}
}
for (int i = 1, u, x, k, last_ans = 0, res; i <= q; i++) {
scanf("%d %d %d", &u, &x, &k);
if (last_ans != -1) {
u ^= last_ans, x ^= last_ans, k ^= last_ans;
}
for (int j = 20; j >= 0; j--) {
if (fa[u][j] && value[fa[u][j]] <= x) {
u = fa[u][j];
}
}
res = sum[root[r[u]]] - sum[root[l[u] - 1]];
last_ans = res < k ? -1 : a[query(root[l[u] - 1], root[r[u]], 1, maxn, res - k + 1)];
printf("%d\n", last_ans);
}
return 0;
}