#6229. 这是一道简单的数学题
代码
/*
Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define endl "\n"
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const double eps = 1e-7;
const int mod = 1e9 + 7, N = 1e6 + 10, inv6 = 166666668, inv2 = 500000004;
int prime[N], mu[N], cnt;
ll sum[N];
bool st[N];
ll quick_pow(ll a, int n) {
ll ans = 1;
while(n) {
if(n & 1) ans = ans * a % mod;
a = a * a % mod;
n >>= 1;
}
return ans;
}
void init() {
mu[1] = 1;
for(int i = 2; i < N; i++) {
if(!st[i]) {
prime[cnt++] = i;
mu[i] = -1;
}
for(int j = 0; j < cnt && i * prime[j] < N; j++) {
st[i * prime[j]] = 1;
if(i % prime[j] == 0) break;
mu[i * prime[j]] = -mu[i];
}
}
for(int i = 1; i < N; i++) {
for(int j = i; j < N; j += i) {
sum[j] = (sum[j] + 1ll * i * i % mod * mu[i] % mod + mod) % mod;
}
}
for(int i = 1; i < N; i++) {
sum[i] = (sum[i] + sum[i - 1]) % mod;
}
}
ll calc1(ll n) {
ll ans = 1ll * (1 + n) * n / 2 % mod;
return 1ll * ans * ans % mod;
}
ll calc2(ll n) {
return 1ll * n * (n + 1) % mod * (2 * n + 1) % mod * inv6 % mod;
}
unordered_map<int, int> ans_s;
ll S(int n) {
if(n < N) return sum[n];
if(ans_s.count(n)) return ans_s[n];
ll ans = n;
for(ll l = 2, r; l <= n; l = r + 1) {
r = n / (n / l);
ans = (ans - 1ll * (calc2(r) - calc2(l - 1) + mod) % mod * S(n / l) % mod + mod) % mod;
}
return ans_s[n] = ans;
}
int main() {
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
// cout << quick_pow(2, mod - 2) << endl;
init();
ll n, ans = 0;
scanf("%lld", &n);
for(ll l = 1, r; l <= n; l = r + 1) {
r = n / (n / l);
ans = (ans + 1ll * calc1(n / l) * ((S(r) - S(l - 1) + mod) % mod) % mod) % mod;
}
printf("%lld\n", 1ll * (ans + n) * inv2 % mod);
return 0;
}