目录

背景

原题复现

我的方案

状态转移图

我的设计

更新方案

FPGA/IC群推荐


 


背景

这是这个系列中的一个状态机的题目,但是相比于给了你完整状态转移图之类的题目,这个题目还是稍微有点难的,我实在不知道该怎么给这个博客起个什么名字?

我在线等一个简单的方式去解决今天的问题,而如题所说,我用最无能的方式来解决这个问题,但简单的方式一定存在。

2019/12/16更新

今天一个帅兄弟给了我一个答案,很巧妙,这里十分感谢。我把它放到后面来给出。

原题复现

原题复现:

Consider a finite state machine with inputs s and w. Assume that the FSM begins in a reset state called A, as depicted below. The FSM remains in state A as long as s = 0, and it moves to state B when s = 1. Once in state B the FSM examines the value of the input w in the next three clock cycles. If w = 1 in exactly two of these clock cycles, then the FSM has to set an output z to 1 in the following clock cycle. Otherwise z has to be 0. The FSM continues checking w for the next three clock cycles, and so on. The timing diagram below illustrates the required values of z for different values of w.

Use as few states as possible. Note that the s input is used only in state A, so you need to consider just the w input.

HDLBits 系列(38)值得一看的状态机设计题目_sed

我的方案

状态转移图

我的解决方案,有点无奈,多加了一些状态:

HDLBits 系列(38)值得一看的状态机设计题目_状态转移图_02

我的设计

根据此状态转移图给出我的设计:

module top_module (
    input clk,
    input reset,   // Synchronous reset
    input s,
    input w,
    output z
);
    
    localparam A = 0, B = 1, S0 = 3, S1 = 4, S2 = 5, S3 = 6, S4 = 7, S5 = 8, S6 = 9, S7 = 10, S8 = 11, S9 = 12, S10 = 13, S11 = 14;
    reg [3:0] state, next_state;
    always@(*) begin
        case(state)
            A: begin
                if(s) next_state = B;
                else next_state = A;
            end
            B: begin
                if(w) next_state = S1;
                else next_state = S0;
            end
            S0: begin
                if(w) next_state = S2;
                else next_state = S4;
            end
            S1: begin
                if(w) next_state = S9;
                else next_state = S6;
            end
            S2: begin
                if(w) next_state = S3;
                else next_state = S5;
            end
            S3: begin
                if(w) next_state = S1;
                else next_state = S0;
            end
            S4: begin
                next_state = S5;
            end
            S5: begin
                if(w) next_state = S1;
                else next_state = S0;
            end
            S6: begin
                if(w) next_state = S7;
                else next_state = S8;
            end
            S7: begin
                if(w) next_state = S1;
                else next_state = S0;
            end
            S8: begin
                if(w) next_state = S1;
                else next_state = S0;
            end
            S9: begin
                if(w) next_state = S11;
                else next_state = S10;
            end
            S10: begin
                if(w) next_state = S1;
                else next_state = S0;
            end
            S11: begin
                if(w) next_state = S1;
                else next_state = S0;
            end
            default: begin
                next_state = A;
            end
             
        endcase
        
    end
    always@(posedge clk) begin
        if(reset) state <= 0;
        else state <= next_state;
    end
    assign z = (state == S10 || state == S7 || state == S3) ? 1 : 0;
    
    
    
    

endmodule

测试成功。


更新方案

今天群里的大佬给了一种简单的方法,状态转移图确实简单了,但是理解起来呢?

我之前用的方案是在B之后的三个周期内,列举w的值,取值情况有8种,然后添加更多的状态去解决这个问题,不得不说状态转移图看起来复杂很多,也绝对不是推荐的方案。

我等待的确实是今天的这个方案,通过计数,不需要添加更多的状态,这也是我一开始就想用的方法,只是计数的时序当时没有搞定,今天很感谢,群里的一位兄弟。

直接给出设计,通过代码就应该能看出来设计的思路:

module top_module (
    input clk,
    input reset,   // Synchronous reset
    input s,
    input w,
    output z
);
    parameter A = 1'b0, B = 1'b1;
    reg current_state;
    reg next_state;
    
    always@(posedge clk)begin
        if(reset)begin
            current_state <= A;
        end
        else begin
            current_state <= next_state;
        end
    end
    
    always@(*)begin
        case(current_state)
            A:begin
                next_state = s ? B : A;
            end
            B:begin
                next_state = B;
            end
        endcase
    end

    reg w_reg1;
    reg w_reg2;
    always@(posedge clk)begin
        if(reset)begin
            w_reg1 <= 1'b0;
            w_reg2 <= 1'b0;
        end
        else if(next_state == B)begin
            w_reg1 <= w;
            w_reg2 <= w_reg1;
        end
        else begin
            w_reg1 <= 1'b0;
            w_reg2 <= 1'b0;
        end
    end
    
    always@(posedge clk)begin
        if(reset)begin
            z <= 1'b0;
        end
        else if(next_state == B && counter == 2'd0)begin
            if(~w & w_reg1 & w_reg2 | w & ~w_reg1 & w_reg2 | w & w_reg1 & ~w_reg2)begin
                z <= 1'b1;
            end
            else begin
                z <= 1'b0;
            end
        end
        else begin
            z <= 1'b0;
        end
    end   
    
    reg [1:0] counter;
    always@(posedge clk)begin
        if(reset)begin
            counter <= 2'd0;
        end
        else if(counter == 2'd2)begin
            counter <= 2'd0;
        end
        else if(next_state == B)begin
            counter <= counter + 1'b1;
        end
    end

endmodule

巧妙之处在于将输入w延迟两拍之后进行判断,如果有两个w为1,则在下一个周期将输出z置位.

有的朋友,也许在状态机的设计中,习惯将第三段使用组合逻辑来实现,这个题目的第三段也可以使用组合逻辑,但是呢?确实也没有必要,因为状态机的第三段本身既可以使用组合逻辑,也可以使用时序逻辑,如果使用时序逻辑。

下面给出组合逻辑的方案:

module top_module (
    input clk,
    input reset,   // Synchronous reset
    input s,
    input w,
    output reg z
);
    parameter A = 1'b0, B = 1'b1;
    reg current_state;
    reg next_state;
    
    always@(posedge clk)begin
        if(reset)begin
            current_state <= A;
        end
        else begin
            current_state <= next_state;
        end
    end
    
    always@(*)begin
        case(current_state)
            A:begin
                next_state = s ? B : A;
            end
            B:begin
                next_state = B;
            end
        endcase
    end

    reg w_reg1;
    reg w_reg2;
    always@(posedge clk)begin
        if(reset)begin
            w_reg1 <= 1'b0;
            w_reg2 <= 1'b0;
        end
        else if(next_state == B)begin
            w_reg1 <= w;
            w_reg2 <= w_reg1;
        end
        else begin
            w_reg1 <= 1'b0;
            w_reg2 <= 1'b0;
        end
    end
    
    reg z_mid;
    always@(*)begin
        if(reset)begin
            z_mid <= 1'b0;
        end
        else if(current_state == B && counter == 2'd0)begin
            if(~w & w_reg1 & w_reg2 | w & ~w_reg1 & w_reg2 | w & w_reg1 & ~w_reg2)begin
                z_mid <= 1'b1;
            end
            else begin
                z_mid <= 1'b0;
            end
        end
        else begin
            z_mid <= 1'b0;
        end
    end
    
    always@(posedge clk)begin
        if(reset)begin
            z <= 1'b0;
        end
        else begin
            z <= z_mid;
        end
    end
    
    
    reg [1:0] counter;
    always@(posedge clk)begin
        if(reset)begin
            counter <= 2'd0;
        end
        else if(counter == 2'd2)begin
            counter <= 2'd0;
        end
        else if(next_state == B)begin
            counter <= counter + 1'b1;
        end
    end

endmodule

只需要将第三段改为组合逻辑,但是输出需要延迟一拍,为什么?看时序图。

FPGA/IC群推荐

IC/FPGA 技术交流

有幸在这个群里认识了诸多俊杰,让我欣慰。