rabbitmq作为成熟的企业消息中间件,实现了应用程序间接口调用的解耦,提高系统的吞吐量。

1.RabbitMQ组成

  • 是由 LShift 提供的一个 Advanced Message Queuing Protocol (AMQP) 的开源实现,由以高性能、健壮以及可伸缩性出名的 Erlang 写成,因此也是继承了这些优点。
  • AMQP 里主要要说两个组件:Exchange 和 Queue (在 AMQP 1.0 里还会有变动),如下图所示,绿色的 X 就是 Exchange ,红色的是 Queue ,这两者都在 Server 端,又称作 Broker ,这部分是 RabbitMQ 实现的,而蓝色的则是客户端,通常有 Producer 和 Consumer 两种类型:

RabbitMQ组成及原理介绍-3_服务器

 

RabbitMQ组成及原理介绍-3_持久化_02

 

  •  RabbitMQ Server: 也叫broker server,它不是运送食物的卡车,而是一种传输服务。原话是RabbitMQ isn’t a food truck, it’s a delivery service. 他的角色就是维护一条从Producer到Consumer的路线,保证数据能够按照指定的方式进行传输。但是这个保证也不是100%的保证,但是对于普通的应用来说这已经足够了。当然对于商业系统来说,可以再做一层数据一致性的guard,就可以彻底保证系统的一致性了。
  • Client A & B: 也叫Producer,数据的发送方。create messages and publish (send) them to a broker server (RabbitMQ).一个Message有两个部分:payload(有效载荷)和label(标签)。payload顾名思义就是传输的数据。label是exchange的名字或者说是一个tag,它描述了payload,而且RabbitMQ也是通过这个label来决定把这个Message发给哪个Consumer。AMQP仅仅描述了label,而RabbitMQ决定了如何使用这个label的规则。
  • Client 1,2,3:也叫Consumer,数据的接收方。Consumers attach to a broker server (RabbitMQ) and subscribe to a queue。把queue比作是一个有名字的邮箱。当有Message到达某个邮箱后,RabbitMQ把它发送给它的某个订阅者即Consumer。当然可能会把同一个Message发送给很多的Consumer。在这个Message中,只有payload,label已经被删掉了。对于Consumer来说,它是不知道谁发送的这个信息的。就是协议本身不支持。但是当然了如果Producer发送的payload包含了Producer的信息就另当别论了。

  对于一个数据从Producer到Consumer的正确传递,还有三个概念需要明确:exchanges, queues and bindings。

  • Exchanges are where producers publish their messages.
  • Queues are where the messages end up and are received by consumers
  • Bindings are how the messages get routed from the exchange to particular queues.

   还有几个概念是上述图中没有标明的,那就是Connection(连接),Channel(通道,频道)。

  • Connection: 就是一个TCP的连接。Producer和Consumer都是通过TCP连接到RabbitMQ Server的。以后我们可以看到,程序的起始处就是建立这个TCP连接。
  • Channels: 虚拟连接。它建立在上述的TCP连接中。数据流动都是在Channel中进行的。也就是说,一般情况是程序起始建立TCP连接,第二步就是建立这个Channel。
  •  那么,为什么使用Channel,而不是直接使用TCP连接?

        对于OS来说,建立和关闭TCP连接是有代价的,频繁的建立关闭TCP连接对于系统的性能有很大的影响,而且TCP的连接数也有限制,这也限制了系统处理高并发的能力。但是,在TCP连接中建立Channel是没有上述代价的。对于Producer或者Consumer来说,可以并发的使用多个Channel进行Publish或者Receive。有实验表明,1s的数据可以Publish10K的数据包。当然对于不同的硬件环境,不同的数据包大小这个数据肯定不一样,但是我只想说明,对于普通的Consumer或者Producer来说,这已经足够了。如果不够用,你考虑的应该是如何细化split你的设计。

Exchange

Exchange是属于Vhost的。同一个Vhost不能有重复的Exchange名称。 Exhange有四种类型:fanout,Direct,header,topic。

Exchange接受Producer发送的Message并根据不同路由算法将Message发送到Message Queue。

RabbitMQ组成及原理介绍-3_服务器_03

  从架构图可以看出,Procuder Publish的Message进入了Exchange。接着通过“routing keys”, RabbitMQ会找到应该把这个Message放到哪个queue里。queue也是通过这个routing keys来做的绑定。

    Exchange的绑定功能,可以绑定queue,也可以绑定Exchange。这个看具体业务了。如果绑定数据,需要在分发或者重新被分派,使用To Exchange绑定。如果要被直接处理,使用queue绑定。如果Exchange绑定了Queue,如果Route Key不对,也会导致数据不可达,被丢掉。(一个数据可以被Queue处理,需要Exchange绑定Queue,并且在Message发送的时候,Route Key 与绑定的Key相等。我们发送一个空数据,Route Key随便制定了Hello,消息虽然发送,但是客户获得失败。

 

    有四种类型的Exchanges:direct, fanout,topic。 每个实现了不同的路由算法(routing algorithm)。

  • Direct exchange: 如果 routing key 匹配, 那么Message就会被传递到相应的queue中。其实在queue创建时,它会自动的以queue的名字  作为routing key来绑定那个exchange。(转发消息到routigKey指定的队列)
  • Fanout exchange: 会向响应的queue广播。(转发消息到所有绑定队列)
  • Topic exchange: 对key进行模式匹配,比如ab*可以传递到所有ab*的queue。(按规则转发消息(最灵活))

 Queue:

  Message Queue会在Message不能被正常消费时将其缓存起来,但是当Consumer与Message Queue之间的连接通畅时,Message Queue将Message转发给Consumer。
    Message由Header和Body组成,Header是由Producer添加的各种属性的集合,包括Message是否客被缓存、由哪个Message Queue接受、优先级是多少等。而Body是真正需要传输的APP数据。
    Exchange与Message Queue之间的关联通过Binding来实现。Exchange在与多个Message Queue发生Binding后会生成一张路由表,路由表中存储着Message Queue所需消息的限制条件即Binding Key。当Exchange收到Message时会解析其Header得到Routing Key,Exchange根据Routing Key与Exchange Type将Message路由到Message Queue。

RabbitMQ组成及原理介绍-3_服务器_04

  Binding Key由Consumer在Binding Exchange与Message Queue时指定,而Routing Key由Producer发送Message时指定,两者的匹配方式由Exchange Type决定。
    Exchange Type分为Direct(单播)、Topic(组播)、Fanout(广播)。当为Direct(单播)时,Routing Key必须与Binding Key相等时才能匹配成功,当为Topic(组播)时,Routing Key与Binding Key符合一种模式关系即算匹配成功,当为Fanout(广播)时,不受限制。默认Exchange Type是Direct(单播)。

routing:exchange和queue之间绑定的媒介,成为routing key。

message acknowledgment: 消息确认,解决消息确认问题,只有收到ack之后才能从消息系统中删除。

message durability: 消息持久化,当rabbitmq退出或崩溃后,会把queue中的消息持久化。但注意,RabbitMQ并不能百分之百保证消息一定不会丢失,因为为了提 升性能,RabbitMQ会把消息暂存在内存缓存中,直到达到阀值才会批量持久化到磁盘,也就是说如果在持久化到磁盘之前RabbitMQ崩溃了,那么就 会丢失一小部分数据,这对于大多数场景来说并不是不可接受的,如果确实需要保证任务绝对不丢失,那么应该使用事务机制。

 

Virtual hosts

   每个virtual host本质上都是一个RabbitMQ Server,拥有它自己的queue,exchange,和bind rule等等。这保证了你可以在多个不同的application中使用RabbitMQ。

 RabbitMQ的Vhost主要是用来划分不同业务模块。不同业务模块之间没有信息交互。Vhost之间相互完全隔离,不同Vhost之间无法共享Exchange和Queue。因此Vhost之间数据无法共享和分享。如果要实现这种功能,需要Vhost之间手动构建对应代码逻辑。

 RabbitMQ组成及原理介绍-3_单播_05

    Vhost其实在用户之间是透明的,Vhost可以被多个用户访问,而一个用户可以同时访问多个Vhost。 例如:peter可以同时访问"/"和"/vhost"。

    Virtual Host是个虚拟概念,可以持有一些Exchange和Message Queue。一个Virtual Host可以是一台服务器,也可以是由多台服务器组成的集群。Exchange和Message Queue可以分别部署在一台或者多台服务器上。

2 应用场景

  言归正传。RabbitMQ,或者说AMQP解决了什么问题,或者说它的应用场景是什么?

     对于一个大型的软件系统来说,它会有很多的组件或者说模块或者说子系统或者(subsystem or Component or submodule)。那么这些模块的如何通信?这和传统的IPC有很大的区别。传统的IPC很多都是在单一系统上的,模块耦合性很大,不适合扩展(Scalability);如果使用socket那么不同的模块的确可以部署到不同的机器上,但是还是有很多问题需要解决。比如:

 1)信息的发送者和接收者如何维持这个连接,如果一方的连接中断,这期间的数据如何方式丢失?

 2)如何降低发送者和接收者的耦合度?

 3)如何让Priority高的接收者先接到数据?

 4)如何做到load balance?有效均衡接收者的负载?

 5)如何有效的将数据发送到相关的接收者?也就是说将接收者subscribe 不同的数据,如何做有效的filter。

 6)如何做到可扩展,甚至将这个通信模块发到cluster上?

 7)如何保证接收者接收到了完整,正确的数据?

  AMDQ协议解决了以上的问题,而RabbitMQ实现了AMQP。

 
Face your past without regret. Handle your present with confidence.Prepare for future without fear. keep the faith and drop the fear. 面对过去无怨无悔,把握现在充满信心,备战未来无所畏惧。保持信念,克服恐惧!一点一滴的积累,一点一滴的沉淀,学技术需要不断的积淀!