Python快速学习opencv

1.安装opencv-python

pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple

2.打开图片并在窗口显示

    img = cv2.imread('Resources/lena.jpg')
    cv2.imshow('output', img)
    cv2.waitKey(0)

3.播放视频

    cap = cv2.VideoCapture('Resources/video.mp4')
    while True:
        success, img = cap.read()
        cv2.imshow('video', img)
        if cv2.waitKey(1) & 0xFF == ord('q'):		# 按q键关闭
            break

4.显示摄像头

    cap = cv2.VideoCapture(0)  # 默认是用户的摄像头
    cap.set(3, 640)  # 设置宽高
    cap.set(4, 480)
    cap.set(10, 100)  # 设置亮度
    while True:
        success, img = cap.read()
        cv2.imshow('video', img)
        if cv2.waitKey(1) & 0xFF == ord('q'):  # 按q键关闭
            break

5.图像灰度处理、高斯模糊、边缘处理、膨胀处理、腐蚀处理

kernel = np.ones((5, 5), np.uint8)
if __name__ == '__main__':
    img = cv2.imread('Resources/lena.jpg')
    imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 灰度处理
    imgBlur = cv2.GaussianBlur(imgGray, (7, 7), 0)  # 高斯模糊
    imgCanny = cv2.Canny(img, 150, 200)  # 边缘化
    imgDialation = cv2.dilate(imgCanny, kernel, iterations=1)  # 膨胀处理
    imgEroded = cv2.erode(imgDialation, kernel, iterations=1) # 腐蚀处理
    cv2.imshow('Img Gray', imgGray)
    cv2.imshow('Img Blur', imgBlur)
    cv2.imshow('Img Canny', imgCanny)
    cv2.imshow('Img Dialation', imgDialation)
    cv2.imshow('Img imgEroded', imgEroded)
    cv2.waitKey(0)

6.调整图像

    img = cv2.imread('Resources/lena.jpg')
    print(img.shape)  # 打印的是高和宽和频道数量
    imgResize = cv2.resize(img, (300, 100))  # 调整宽为300 高为100

    imgCropped = img[0:200, 200:300]  # 高从0到200 宽从 200到300
    print(imgResize.shape)
    cv2.imshow('imgCropped', imgCropped)
    cv2.imshow('img', img)
    cv2.waitKey(0)

7.绘制图形

    img = np.zeros((512, 512, 3), np.uint8)
    img[:] = 255, 0, 0  # 修改图像颜色为蓝色(BGR)
    cv2.line(img, (0, 0), (200, 200), (0, 255, 0), 3)  # 画一条绿线起点是(0,0) 终点是(200,200) 颜色是绿色 厚度是3
    cv2.rectangle(img, (0, 0), (100, 100), (0, 0, 255), cv2.FILLED)  # 填充红色矩形
    cv2.circle(img, (200, 100), 30, (255, 255, 0), 5)  # 填充圆形
    cv2.putText(img, 'This is a Text', (250, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 150, 0), 3)
    cv2.imshow('img', img)
    cv2.waitKey(0)

8.截取特定位置的图片

import cv2
import numpy as np

img = cv2.imread("Resources/cards.jpg")

width, height = 250, 350
pts1 = np.float32([[111, 219], [287, 188], [154, 482], [352, 440]])  # 需要截取的区域(左上,右上,左下,右下)
pts2 = np.float32([[0, 0], [width, 0], [0, height], [width, height]])  # 转换后的矩阵区域
matrix = cv2.getPerspectiveTransform(pts1, pts2)  # 创建转换矩阵
imgOutput = cv2.warpPerspective(img, matrix, (width, height))  # 导出转换后的图片

cv2.imshow("Image", img)
cv2.imshow("Output", imgOutput)
print(imgOutput.shape)
cv2.waitKey(0)

9.堆叠图像

import cv2
import numpy as np


def stackImages(scale, imgArray):  # 将图像堆叠的函数
    rows = len(imgArray)
    cols = len(imgArray[0])
    rowsAvailable = isinstance(imgArray[0], list)
    width = imgArray[0][0].shape[1]
    height = imgArray[0][0].shape[0]
    if rowsAvailable:
        for x in range(0, rows):
            for y in range(0, cols):
                if imgArray[x][y].shape[:2] == imgArray[0][0].shape[:2]:
                    imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)
                else:
                    imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]),
                                                None, scale, scale)
                if len(imgArray[x][y].shape) == 2: imgArray[x][y] = cv2.cvtColor(imgArray[x][y], cv2.COLOR_GRAY2BGR)
        imageBlank = np.zeros((height, width, 3), np.uint8)
        hor = [imageBlank] * rows
        hor_con = [imageBlank] * rows
        for x in range(0, rows):
            hor[x] = np.hstack(imgArray[x])
        ver = np.vstack(hor)
    else:
        for x in range(0, rows):
            if imgArray[x].shape[:2] == imgArray[0].shape[:2]:
                imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)
            else:
                imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None, scale, scale)
            if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)
        hor = np.hstack(imgArray)
        ver = hor
    return ver


img = cv2.imread('Resources/lena.png')
imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

imgStack = stackImages(0.5, ([img, imgGray, img], [img, img, img]))  # 2*3进行堆叠

# imgHor = np.hstack((img,img))	 水平堆叠
# imgVer = np.vstack((img,img))	 竖直堆叠
#
# cv2.imshow("Horizontal",imgHor)
# cv2.imshow("Vertical",imgVer)
cv2.imshow("ImageStack", imgStack)

cv2.waitKey(0)

10.通过检测图片颜色和定义追踪栏获取指定内容

import cv2
import numpy as np

def empty(a):
    pass

def stackImages(scale,imgArray):
    rows = len(imgArray)
    cols = len(imgArray[0])
    rowsAvailable = isinstance(imgArray[0], list)
    width = imgArray[0][0].shape[1]
    height = imgArray[0][0].shape[0]
    if rowsAvailable:
        for x in range ( 0, rows):
            for y in range(0, cols):
                if imgArray[x][y].shape[:2] == imgArray[0][0].shape [:2]:
                    imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)
                else:
                    imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]), None, scale, scale)
                if len(imgArray[x][y].shape) == 2: imgArray[x][y]= cv2.cvtColor( imgArray[x][y], cv2.COLOR_GRAY2BGR)
        imageBlank = np.zeros((height, width, 3), np.uint8)
        hor = [imageBlank]*rows
        hor_con = [imageBlank]*rows
        for x in range(0, rows):
            hor[x] = np.hstack(imgArray[x])
        ver = np.vstack(hor)
    else:
        for x in range(0, rows):
            if imgArray[x].shape[:2] == imgArray[0].shape[:2]:
                imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)
            else:
                imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None,scale, scale)
            if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)
        hor= np.hstack(imgArray)
        ver = hor
    return ver



path = 'Resources/lambo.png'
cv2.namedWindow("TrackBars")
cv2.resizeWindow("TrackBars",640,240)
cv2.createTrackbar("Hue Min","TrackBars",0,179,empty)
cv2.createTrackbar("Hue Max","TrackBars",19,179,empty)
cv2.createTrackbar("Sat Min","TrackBars",110,255,empty)
cv2.createTrackbar("Sat Max","TrackBars",240,255,empty)
cv2.createTrackbar("Val Min","TrackBars",153,255,empty)
cv2.createTrackbar("Val Max","TrackBars",255,255,empty)

while True:
    img = cv2.imread(path)
    imgHSV = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
    h_min = cv2.getTrackbarPos("Hue Min","TrackBars")
    h_max = cv2.getTrackbarPos("Hue Max", "TrackBars")
    s_min = cv2.getTrackbarPos("Sat Min", "TrackBars")
    s_max = cv2.getTrackbarPos("Sat Max", "TrackBars")
    v_min = cv2.getTrackbarPos("Val Min", "TrackBars")
    v_max = cv2.getTrackbarPos("Val Max", "TrackBars")
    print(h_min,h_max,s_min,s_max,v_min,v_max)
    lower = np.array([h_min,s_min,v_min])
    upper = np.array([h_max,s_max,v_max])
    mask = cv2.inRange(imgHSV,lower,upper)
    imgResult = cv2.bitwise_and(img,img,mask=mask)


    # cv2.imshow("Original",img)
    # cv2.imshow("HSV",imgHSV)
    # cv2.imshow("Mask", mask)
    # cv2.imshow("Result", imgResult)

    imgStack = stackImages(0.6,([img,imgHSV],[mask,imgResult]))
    cv2.imshow("Stacked Images", imgStack)

    cv2.waitKey(1)

11.图形形状识别

import cv2
import numpy as np


def stackImages(scale, imgArray):
    rows = len(imgArray)
    cols = len(imgArray[0])
    rowsAvailable = isinstance(imgArray[0], list)
    width = imgArray[0][0].shape[1]
    height = imgArray[0][0].shape[0]
    if rowsAvailable:
        for x in range(0, rows):
            for y in range(0, cols):
                if imgArray[x][y].shape[:2] == imgArray[0][0].shape[:2]:
                    imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)
                else:
                    imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]),
                                                None, scale, scale)
                if len(imgArray[x][y].shape) == 2: imgArray[x][y] = cv2.cvtColor(imgArray[x][y], cv2.COLOR_GRAY2BGR)
        imageBlank = np.zeros((height, width, 3), np.uint8)
        hor = [imageBlank] * rows
        hor_con = [imageBlank] * rows
        for x in range(0, rows):
            hor[x] = np.hstack(imgArray[x])
        ver = np.vstack(hor)
    else:
        for x in range(0, rows):
            if imgArray[x].shape[:2] == imgArray[0].shape[:2]:
                imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)
            else:
                imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None, scale, scale)
            if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)
        hor = np.hstack(imgArray)
        ver = hor
    return ver


def getContours(img):
    # 获取所有边缘化后的图形
    contours, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
    for cnt in contours:
        area = cv2.contourArea(cnt)  # 图像面积
        print(area)
        if area > 500:
            # 绘图
            cv2.drawContours(imgContour, cnt, -1, (255, 0, 0), 3)
            # 图像轮廓周长
            peri = cv2.arcLength(cnt, True)
            # print(peri)
            # 获取折点的列表
            approx = cv2.approxPolyDP(cnt, 0.02 * peri, True)
            print(len(approx))
            #  点的个数
            objCor = len(approx)
            # 获取图形的外界矩形.
            x, y, w, h = cv2.boundingRect(approx)
            # 判断图形形状
            if objCor == 3:
                objectType = "Tri"
            elif objCor == 4:
                aspRatio = w / float(h)
                if aspRatio > 0.98 and aspRatio < 1.03:
                    objectType = "Square"
                else:
                    objectType = "Rectangle"
            elif objCor > 4:
                objectType = "Circles"
            else:
                objectType = "None"

            # 绘制外界矩形
            cv2.rectangle(imgContour, (x, y), (x + w, y + h), (0, 255, 0), 2)
            # 判断图形形状并用文字说明
            cv2.putText(imgContour, objectType,
                        (x + (w // 2) - 10, y + (h // 2) - 10), cv2.FONT_HERSHEY_COMPLEX, 0.7,
                        (0, 0, 0), 2)


path = 'Resources/shapes.png'
img = cv2.imread(path)
imgContour = img.copy()

imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
imgBlur = cv2.GaussianBlur(imgGray, (7, 7), 1)
imgCanny = cv2.Canny(imgBlur, 50, 50)
getContours(imgCanny)

imgBlank = np.zeros_like(img)
imgStack = stackImages(0.6, ([img, imgGray, imgBlur],
                             [imgCanny, imgContour, imgBlank]))

cv2.imshow("Stack", imgStack)

cv2.waitKey(0)

12.人脸识别

import cv2

faceCascade= cv2.CascadeClassifier("Resources/haarcascade_frontalface_default.xml")
cap = cv2.VideoCapture(0)  # 默认是用户的摄像头
cap.set(3, 640)  # 设置宽高
cap.set(4, 480)
cap.set(10, 100)  # 设置亮度
while True:
    success, img = cap.read()
    #cv2.imshow('video', img)
    imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    faces = faceCascade.detectMultiScale(imgGray, 1.1, 4)

    for (x, y, w, h) in faces:
        cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)

    cv2.imshow("Result", img)
    if cv2.waitKey(1) & 0xFF == ord('q'):  # 按q键关闭
        break

13.虚拟绘画

import cv2
import numpy as np
frameWidth = 640
frameHeight = 480
cap = cv2.VideoCapture(0)
cap.set(3, frameWidth)
cap.set(4, frameHeight)
cap.set(10,150)

myColors = [[5,107,0,19,255,255],
            [133,56,0,159,156,255],
            [57,76,0,100,255,255],
            [90,48,0,118,255,255]]
myColorValues = [[51,153,255],          ## BGR
                 [255,0,255],
                 [0,255,0],
                 [255,0,0]]

myPoints =  []  ## [x , y , colorId ]

def findColor(img,myColors,myColorValues):
    imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    count = 0
    newPoints=[]
    for color in myColors:
        lower = np.array(color[0:3])        #这里的color用追踪器获取颜色
        upper = np.array(color[3:6])
        mask = cv2.inRange(imgHSV,lower,upper)  # 通过hsv得到蒙版
        x,y=getContours(mask)
        cv2.circle(imgResult,(x,y),15,myColorValues[count],cv2.FILLED)
        if x!=0 and y!=0:
            newPoints.append([x,y,count])
        count +=1
        #cv2.imshow(str(color[0]),mask)
    return newPoints

def getContours(img):   #找到图形的中心位置
    contours,hierarchy = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)
    x,y,w,h = 0,0,0,0
    for cnt in contours:
        area = cv2.contourArea(cnt)
        if area>500:
            #cv2.drawContours(imgResult, cnt, -1, (255, 0, 0), 3)
            peri = cv2.arcLength(cnt,True)
            approx = cv2.approxPolyDP(cnt,0.02*peri,True)
            x, y, w, h = cv2.boundingRect(approx)
    return x+w//2,y

def drawOnCanvas(myPoints,myColorValues):
    for point in myPoints:
        cv2.circle(imgResult, (point[0], point[1]), 10, myColorValues[point[2]], cv2.FILLED)


while True:
    success, img = cap.read()
    imgResult = img.copy()
    newPoints = findColor(img, myColors,myColorValues)
    if len(newPoints)!=0:
        for newP in newPoints:
            myPoints.append(newP)
    if len(myPoints)!=0:
        drawOnCanvas(myPoints,myColorValues)


    cv2.imshow("Result", imgResult)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

14.捕捉车牌号码

import cv2

#############################################
frameWidth = 640
frameHeight = 480
nPlateCascade = cv2.CascadeClassifier("Resources/haarcascade_russian_plate_number.xml")
minArea = 200
color = (255,0,255)
###############################################
cap = cv2.VideoCapture("Resources/video12.mp4")
cap.set(3, frameWidth)
cap.set(4, frameHeight)
cap.set(10,150)
count = 0

while True:
    success, img = cap.read()
    imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    numberPlates = nPlateCascade.detectMultiScale(imgGray, 1.1, 10)
    for (x, y, w, h) in numberPlates:
        area = w*h
        if area >minArea:
            cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 255), 2)
            cv2.putText(img,"Number Plate",(x,y-5),
                        cv2.FONT_HERSHEY_COMPLEX_SMALL,1,color,2)
            imgRoi = img[y:y+h,x:x+w]
            cv2.imshow("ROI", imgRoi)

    cv2.imshow("Result", img)

    # 如果按下s 键则会保存截取的图片
    if cv2.waitKey(1) & 0xFF == ord('s'):
        cv2.imwrite("Resources/Scanned/NoPlate_"+str(count)+".jpg",imgRoi)
        cv2.rectangle(img,(0,200),(640,300),(0,255,0),cv2.FILLED)
        cv2.putText(img,"Scan Saved",(150,265),cv2.FONT_HERSHEY_DUPLEX,
                    2,(0,0,255),2)
        cv2.imshow("Result",img)
        cv2.waitKey(500)
        count +=1