二、黑猩猩优化算法(ChOA)简介

1 ChOA数学描述

黑猩猩优化算法(ChOA) 是M.Khi she等人于2020年根据黑猩猩群体狩猎行为提出的一种新型元启发式优化算法。ChOA通过模拟攻击黑猩猩、驱赶黑猩猩、拦截黑猩猩和追逐黑猩猩4类黑猩猩协同狩猎行为来达到求解问题的目的。与其他算法相比, ChOA具有收敛速度快、寻优精度高等特点。

(1)驱赶和追逐猎物。

在黑猩猩狩猎过程中,通常根据黑猩猩个体智力和性动机来分配狩猎职责。任何黑猩猩均可随机改变其在猎物周围空间中的位置,数学描述为

d=|cx prey(t) -mx chimp(t) |(1)

x chimp(t+1) =X prey(t) -ad(2)

式中:d为黑猩猩与猎物间距; t为当前迭代次数; X prey(t) 为猎物位置向量; X chimp(t) 为黑猩猩位置向量; a、m、c为系数向量, a=2fr 1-f, c=2r 2, m=Chaotic_value(基于混沌映射的混沌向量) , f为迭代过程中从2.0非线性降至0, r 1、r 2为[0, 1] 范围内的随机向量。

(2)攻击方式。

黑猩猩能够探查猎物位置(通过驱赶、拦截和追逐),然后包围猎物。狩猎过程通常由攻击黑猩猩进行,驱赶黑猩猩、拦截黑猩猩和追逐黑猩猩参与狩猎过程。4类黑猩猩通过下式更新其位置,其他黑猩猩根据最佳黑猩猩位置更新其位置,猎物位置由最佳黑猩猩个体位置估计。数学描述为

【单目标优化求解】基于matlab黑猩猩算法求解单目标问题【含Matlab源码 1413期】_线性代数

式中:dAttacker、dBarrier、dChaser、dDriver分别为当前攻击黑猩猩、拦截黑猩猩、追逐黑猩猩、驱赶黑猩猩与猎物的间距;xAttacker、xBarrier、xChaser、xDriver分别为攻击黑猩猩、拦截黑猩猩、追逐黑猩猩、驱赶黑猩猩相对于猎物的位置向量;a1~a4、m1~m4、c1~c4分别为攻击黑猩猩、拦截黑猩猩、追逐黑猩猩、驱赶黑猩猩系数向量;x1、x2、x3、x4分别为攻击黑猩猩、拦截黑猩猩、追逐黑猩猩和驱赶黑猩猩位置更新向量;x为其他黑猩猩位置向量。

(3)攻击和寻找猎物。

在狩猎最后阶段,一方面黑猩猩根据攻击者、驱赶者、拦截者和追逐者位置更新位置,并攻击猎物;另一方面黑猩猩通过分散寻找猎物显示探查过程,即ChOA全局搜索。

(4)社会动机。

社会动机(性爱和修饰)会导致黑猩猩放弃其狩猎职责,这一行为有助于ChOA在求解高维问题时克服陷入局部最优和收敛速度慢等缺点。在优化过程中,通过50%的概率选择黑猩猩正常位置更新或通过混沌模型进行位置更新。数学模型表示为

【单目标优化求解】基于matlab黑猩猩算法求解单目标问题【含Matlab源码 1413期】_线性代数_02

式中:μ为[0,1]范围内的随机数。

三、部分源代码

%___________________________________________________________________%

% You can simply define your cost in a seperate file and load its handle to fobj
% The initial parameters that you need are:
%__________________________________________
% fobj = @YourCostFunction
% dim = number of your variables
% Max_iteration = maximum number of generations
% SearchAgents_no = number of search agents
% lb=[lb1,lb2,...,lbn] where lbn is the lower bound of variable n
% ub=[ub1,ub2,...,ubn] where ubn is the upper bound of variable n
% If all the variables have equal lower bound you can just
% define lb and ub as two single number numbers

%
%__________________________________________

clear all
clc

SearchAgents_no=30; % Number of search agents
N=SearchAgents_no;
Function_name='F2'; % Name of the test function that can be from F1 to F23 (Table 3,4,5 in the paper)

Max_iteration=500; % Maximum numbef of iterations
Max_iter=Max_iteration;

% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);


[ABest_scoreChimp,ABest_posChimp,Chimp_curve]=Chimp(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
[PSO_gBestScore,PSO_gBest,PSO_cg_curve]=PSO(N,Max_iteration,lb,ub,dim,fobj);
[TACPSO_gBestScore,TACPSO_gBest,TACPSO_cg_curve]=TACPSO(N,Max_iteration,lb,ub,dim,fobj);
[MPSO_gBestScore,MPSO_gBest,MPSO_cg_curve]=MPSO(N,Max_iteration,lb,ub,dim,fobj);

% PSO_cg_curve=PSO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj); % run PSO to compare to results

figure('Position',[500 500 660 290])
%Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])

%Draw objective space
subplot(1,2,2);
semilogy(MPSO_cg_curve,'Color','g')
hold on
semilogy(PSO_cg_curve,'Color','b')
hold on
semilogy(TACPSO_cg_curve,'Color','y')
hold on
semilogy(Chimp_curve,'--r')


title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');

axis tight
grid on
box on
legend('MPSO','PSO','TACPSO','Chimp')
img =gcf; %获取当前画图的句柄
print(img, '-dpng', '-r600', './img.png') %即可得到对应格式和期望dpi的图像

display(['The best optimal value of the objective funciton found by TACPSO is : ', num2str(TACPSO_gBestScore)]);
display(['The best optimal value of the objective funciton found by PSO is : ', num2str(PSO_gBestScore)]);
display(['The best optimal value of the objective funciton found by PSO is : ', num2str(MPSO_gBestScore)]);
display(['The best optimal value of the objective funciton found by Chimp is : ', num2str(ABest_scoreChimp)]);

%% % Chimp Optimization Algorithm (ChOA) source codes version 1.0


function O=chaos(index,max_iter,Value)

O=zeros(1,max_iter);
x(1)=0.7;
switch index
%Chebyshev map
case 1
for i=1:max_iter
x(i+1)=cos(i*acos(x(i)));
G(i)=((x(i)+1)*Value)/2;
end
case 2
%Circle map
a=0.5;
b=0.2;
for i=1:max_iter
x(i+1)=mod(x(i)+b-(a/(2*pi))*sin(2*pi*x(i)),1);
G(i)=x(i)*Value;
end
case 3
%Gauss/mouse map
for i=1:max_iter
if x(i)==0
x(i+1)=0;
else
x(i+1)=mod(1/x(i),1);
end
G(i)=x(i)*Value;
end

case 4
%Iterative map
a=0.7;
for i=1:max_iter
x(i+1)=sin((a*pi)/x(i));
G(i)=((x(i)+1)*Value)/2;
end

case 5
%Logistic map
a=4;
for i=1:max_iter
x(i+1)=a*x(i)*(1-x(i));
G(i)=x(i)*Value;
end
case 6
%Piecewise map
P=0.4;
for i=1:max_iter
if x(i)>=0 && x(i)<P
x(i+1)=x(i)/P;
end
if x(i)>=P && x(i)<0.5
x(i+1)=(x(i)-P)/(0.5-P);
end
if x(i)>=0.5 && x(i)<1-P
x(i+1)=(1-P-x(i))/(0.5-P);
end
if x(i)>=1-P && x(i)<1
x(i+1)=(1-x(i))/P;
end
G(i)=x(i)*Value;
end

case 7
%Sine map
for i=1:max_iter
x(i+1) = sin(pi*x(i));
G(i)=(x(i))*Value;
end
case 8
%Singer map
u=1.07;
for i=1:max_iter
x(i+1) = u*(7.86*x(i)-23.31*(x(i)^2)+28.75*(x(i)^3)-13.302875*(x(i)^4));
G(i)=(x(i))*Value;
end
case 9
%Sinusoidal map
for i=1:max_iter
x(i+1) = 2.3*x(i)^2*sin(pi*x(i));
G(i)=(x(i))*Value;
end

case 10
%Tent map
x(1)=0.6;
for i=1:max_iter
if x(i)<0.7
x(i+1)=x(i)/0.7;
end
if x(i)>=0.7
x(i+1)=(10/3)*(1-x(i));
end
G(i)=(x(i))*Value;
end

end
O=G;

四、运行结果

【单目标优化求解】基于matlab黑猩猩算法求解单目标问题【含Matlab源码 1413期】_优化算法_03

五、matlab版本及参考文献

1 matlab版本

2014a

2 参考文献

[1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.

[2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.

[3]程国森,崔东文.黑猩猩优化算法-极限学习机模型在富水性分级判定中的应用[J].人民黄河. 2021,43(07)