地址:https://leetcode-cn.com/problems/unique-paths-ii/
Java 代码:
public class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int rows = obstacleGrid.length;
if (rows == 0) {
return 0;
}
int cols = obstacleGrid[0].length;
int[][] dp = new int[rows][cols];
// 如果一开始就遇到障碍,就没有必要进行下去了
if (obstacleGrid[0][0] == 1) {
return 0;
} else {
dp[0][0] = 1;
}
// 先把第 0 行写了
for (int j = 1; j < cols && obstacleGrid[0][j] == 0; j++) {
dp[0][j] = 1;
}
// 再把第 0 列写了
for (int i = 1; i < rows && obstacleGrid[i][0] == 0; i++) {
dp[i][0] = 1;
}
for (int i = 1; i < rows; i++) {
for (int j = 1; j < cols; j++) {
if (obstacleGrid[i][j] == 1) {
dp[i][j] = 0;
} else {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
}
return dp[rows - 1][cols - 1];
}
}
可以设置一个哨兵的行和列,这样就可以避免分类讨论。
Java 代码:
public class Solution {
// 状态压缩 + 哨兵技巧
// 空间复杂度:O(N),N 是矩阵的列数
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m = obstacleGrid.length;
if (m == 0) {
return 0;
}
int n = obstacleGrid[0].length;
int[] dp = new int[n + 1];
// 技巧:回避了对边界条件的判断
dp[1] = 1;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (obstacleGrid[i][j] == 1) {
dp[j + 1] = 0;
} else {
dp[j + 1] += dp[j];
}
}
}
return dp[n];
}
}