01
启动代码
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \
./examples/jars/spark-examples_2.11-2.1.1.jar \
100
yarn 会按照下面的顺序依次启动了 3 个进程:
SparkSubmit
ApplicationMaster
CoarseGrainedExecutorBackend
1bin/spark-submit 启动脚本分析
if [ -z "${SPARK_HOME}" ]; then
source "$(dirname "$0")"/find-spark-home
fi
# disable randomized hash for string in Python 3.3+
export PYTHONHASHSEED=0
//启动类
exec "${SPARK_HOME}"/bin/spark-class org.apache.spark.deploy.SparkSubmit "$@"
启动类org.apache.spark.deploy.SparkSubmit
/bin/spark-class
exec "${CMD[@]}"
最终启动类
/test/jdk1.8.0_172/bin/java
-cp
/test/spark-yarn/conf/:/test/spark-yarn/jars/*:/test/hadoop-2.7.2/etc/hadoop/
org.apache.spark.deploy.SparkSubmit
--master yarn
--deploy-mode cluster
--class org.apache.spark.examples.SparkPi
./examples/jars/spark-examples_2.11-2.1.1.jar 100
2org.apache.spark.deploy.SparkSubmit 源码
SparkSubmit伴生对象
def main(args: Array[String]): Unit = {
/*
参数
--master yarn
--deploy-mode cluster
--class org.apache.spark.examples.SparkPi
./examples/jars/spark-examples_2.11-2.1.1.jar 100
*/
val appArgs = new SparkSubmitArguments(args)
appArgs.action match {
// 如果没有指定 action, 则 action 的默认值是: action = Option(action).getOrElse(SUBMIT)
case SparkSubmitAction.SUBMIT => submit(appArgs)
case SparkSubmitAction.KILL => kill(appArgs)
case SparkSubmitAction.REQUEST_STATUS => requestStatus(appArgs)
}
}
submit 方法
/**
* 使用提供的参数提交应用程序
* 1. 准备启动环境.
* 根据集群管理器和部署模式为 child main class 设置正确的 classpath, 系统属性,应用参数
* 2. 使用启动环境调用 child main class 的 main 方法
*/
@tailrec
private def submit(args: SparkSubmitArguments): Unit = {
// 准备提交环境 childMainClass = "org.apache.spark.deploy.yarn.Client"
val (childArgs, childClasspath, sysProps, childMainClass) = prepareSubmitEnvironment(args)
def doRunMain(): Unit = {
if (args.proxyUser != null) {
} else {
runMain(childArgs, childClasspath, sysProps, childMainClass, args.verbose)
}
}
if (args.isStandaloneCluster && args.useRest) {
// 在其他任何模式, 仅仅运行准备好的主类
} else {
doRunMain()
}
prepareSubmitEnvironment 方法
/**
* Prepare the environment for submitting an application.
* This returns a 4-tuple:
* (1) the arguments for the child process,
* (2) a list of classpath entries for the child,
* (3) a map of system properties, and
* (4) the main class for the child
* Exposed for testing.
*/
private[deploy] def prepareSubmitEnvironment(args: SparkSubmitArguments)
: (Seq[String], Seq[String], Map[String, String], String) = {
// Return values
// 需要返回的值
val childArgs = new ArrayBuffer[String]()
val childClasspath = new ArrayBuffer[String]()
val sysProps = new HashMap[String, String]()
var childMainClass = ""
// Set the cluster manager
// 设置集群管理器
val clusterManager: Int = args.master match {
case "yarn" => YARN
//yarn-client 是老版本
case "yarn-client" | "yarn-cluster" =>
printWarning(s"Master ${args.master} is deprecated since 2.0." +
" Please use master \"yarn\" with specified deploy mode instead.")
YARN
case m if m.startsWith("spark") => STANDALONE
case m if m.startsWith("mesos") => MESOS
case m if m.startsWith("local") => LOCAL
case _ =>
printErrorAndExit("Master must either be yarn or start with spark, mesos, local")
-1
}
// Set the deploy mode; default is client mode
// 设置发布模式, 默认是 client 模式
var deployMode: Int = args.deployMode match {
case "client" | null => CLIENT // 默认是 client 模式
case "cluster" => CLUSTER
case _ => printErrorAndExit("Deploy mode must be either client or cluster"); -1
}
// Because the deprecated way of specifying "yarn-cluster" and "yarn-client" encapsulate both
// the master and deploy mode, we have some logic to infer the master and deploy mode
// from each other if only one is specified, or exit early if they are at odds.
// 兼容旧模式: yarn-cluster 和 yarn-client
if (clusterManager == YARN) {
(args.master, args.deployMode) match {
case ("yarn-cluster", null) =>
deployMode = CLUSTER
args.master = "yarn"
case ("yarn-cluster", "client") =>
printErrorAndExit("Client deploy mode is not compatible with master \"yarn-cluster\"")
case ("yarn-client", "cluster") =>
printErrorAndExit("Cluster deploy mode is not compatible with master \"yarn-client\"")
case (_, mode) =>
args.master = "yarn"
}
// Update args.deployMode if it is null. It will be passed down as a Spark property later.
(args.deployMode, deployMode) match {
case (null, CLIENT) => args.deployMode = "client"
case (null, CLUSTER) => args.deployMode = "cluster"
case _ =>
}
}
doRunMain 方法
def doRunMain(): Unit = {if (args.proxyUser != null) {
。。。
} else {
runMain(childArgs, childClasspath, sysProps, childMainClass, args.verbose)
}
}
runMain 方法
/**
* Run the main method of the child class using the provided launch environment.
* 使用给定启动环境运行 child class 的 main 方法
* 注意: 如果使用了cluster deploy mode, 主类并不是用户提供
* Note that this main class will not be the one provided by the user if we're
* running cluster deploy mode or python applications.
*/
private def runMain(
childArgs: Seq[String],
childClasspath: Seq[String],
sysProps: Map[String, String],
childMainClass: String,
verbose: Boolean): Unit = {
...
var mainClass: Class[_] = null
try {
// 使用反射的方式加载 childMainClass = "org.apache.spark.deploy.yarn.Client"
mainClass = Utils.classForName(childMainClass) // 在 client模式下, 直接指向用户的类
} catch {
...
}
// 反射出来 Client 的 main 方法
// 如果是 yarn-client 就是反射的用户类的main
val mainMethod = mainClass.getMethod("main", new Array[String](0).getClass)
// main 方法必须是静态的
if (!Modifier.isStatic(mainMethod.getModifiers)) {
throw new IllegalStateException("The main method in the given main class must be static")
}
...
try {
// 调用 main 方法.
mainMethod.invoke(null, childArgs.toArray)
} catch {
case t: Throwable =>
...
}
}
3org.apache.spark.deploy.yarn.Client
main方法
def main(argStrings: Array[String]) {
// 设置环境变量 SPARK_YARN_MODE 表示运行在 YARN mode
// 注意: 任何带有 SPARK_ 前缀的环境变量都会分发到所有的进程, 也包括远程进程
System.setProperty("SPARK_YARN_MODE", "true")
val sparkConf = new SparkConf
// 对传递来的参数进一步封装
val args = new ClientArguments(argStrings)
new Client(args, sparkConf).run()
}
Client(args, sparkConf).run()
/**
* Submit an application to the ResourceManager.
* If set spark.yarn.submit.waitAppCompletion to true, it will stay alive
* reporting the application's status until the application has exited for any reason.
* Otherwise, the client process will exit after submission.
* If the application finishes with a failed, killed, or undefined status,
* throw an appropriate SparkException.
*
* 向 RM 提交应用
*
* 如果设置了spark.yarn.submit.waitAppCompletion 为 true,
* 则 Client 会一直保持 alive 来报告应用的状态, 直到应用退出
* 否则, 应用提交之后, 客户端会自动退出.
*
* 如果应用由于失败, 被杀或者其他未知转态, 则会抛出异常
*/
def run(): Unit = {
// 提交应用, 返回应用的 id
this.appId = submitApplication()
if (!launcherBackend.isConnected() && fireAndForget) {
val report = getApplicationReport(appId)
...
} else {
...
}
}
submitApplication()
/**
* Submit an application running our ApplicationMaster to the ResourceManager.
*
* The stable Yarn API provides a convenience method (YarnClient#createApplication) for
* * creating applications and setting up the application submission context. This was not
* * available in the alpha API.
*
* 向 ResourceManager 提交运行 ApplicationMaster 的应用程序。
*
*/
def submitApplication(): ApplicationId = {
var appId: ApplicationId = null
try {
launcherBackend.connect()
// Setup the credentials before doing anything else,
// so we have don't have issues at any point.
setupCredentials()
// 初始化 yarn 客户端
yarnClient.init(yarnConf)
// 启动 yarn 客户端
yarnClient.start()
logInfo("Requesting a new application from cluster with %d NodeManagers"
.format(yarnClient.getYarnClusterMetrics.getNumNodeManagers))
// Get a new application from our RM
// 从 RM 创建一个应用程序
val newApp = yarnClient.createApplication()
val newAppResponse = newApp.getNewApplicationResponse()
// 获取到 applicationID
appId = newAppResponse.getApplicationId()
reportLauncherState(SparkAppHandle.State.SUBMITTED)
launcherBackend.setAppId(appId.toString)
new CallerContext("CLIENT", Option(appId.toString)).setCurrentContext()
// Verify whether the cluster has enough resources for our AM
verifyClusterResources(newAppResponse)
// Set up the appropriate contexts to launch our AM
// 设置正确的上下文对象来启动 ApplicationMaster org.apache.spark.deploy.yarn.ApplicationMaster
val containerContext = createContainerLaunchContext(newAppResponse)
// 创建应用程序提交任务上下文
val appContext = createApplicationSubmissionContext(newApp, containerContext)
// Finally, submit and monitor the application
logInfo(s"Submitting application $appId to ResourceManager")
// 提交应用给 ResourceManager 启动 ApplicationMaster
// org.apache.spark.deploy.yarn.ApplicationMaster
yarnClient.submitApplication(appContext)
appId
} catch {
}
}
createContainerLaunchContext()
private def createContainerLaunchContext(newAppResponse: GetNewApplicationResponse)
: ContainerLaunchContext = {
val amClass =
if (isClusterMode) {
// 如果是 Cluster 模式
Utils.classForName("org.apache.spark.deploy.yarn.ApplicationMaster").getName
} else {
// 如果是 Client 模式
Utils.classForName("org.apache.spark.deploy.yarn.ExecutorLauncher").getName
}
amContainer
}
SparkSubmit 进程启动完毕
4org.apache.spark.deploy.yarn.ApplicationMaster
ApplicationMaster伴生对象的 main方法
def main(args: Array[String]): Unit = {
SignalUtils.registerLogger(log)
// 构建 ApplicationMasterArguments 对象, 对传来的参数做封装
val amArgs: ApplicationMasterArguments = new ApplicationMasterArguments(args)
// Load the properties file with the Spark configuration and set entries as system properties,
// so that user code run inside the AM also has access to them.
// Note: we must do this before SparkHadoopUtil instantiated
if (amArgs.propertiesFile != null) {
Utils.getPropertiesFromFile(amArgs.propertiesFile).foreach { case (k, v) =>
sys.props(k) = v
}
}
SparkHadoopUtil.get.runAsSparkUser { () =>
// 构建 ApplicationMaster 实例, ApplicationMaster 需要与 RM 通讯
master = new ApplicationMaster(amArgs, new YarnRMClient)
// 运行 ApplicationMaster 的 run 方法, run 方法结束之后, 结束 ApplicationMaster 进程
System.exit(master.run())
}
}
ApplicationMaster 伴生类的 run方法
final def run(): Int = {
// 关键核心代码
try {
val fs = FileSystem.get(yarnConf)
if (isClusterMode) {//如果是集群模式
runDriver(securityMgr)
} else {//client模式
runExecutorLauncher(securityMgr)
}
} catch {
}
exitCode
}
runDriver()
private def runDriver(securityMgr: SecurityManager): Unit = {
addAmIpFilter()
// 开始执行用户类. 启动一个子线程来执行用户类的 main 方法. 返回值就是运行用户类的子线程.
// 线程名就叫 "Driver"
userClassThread = startUserApplication()
// This a bit hacky, but we need to wait until the spark.driver.port property has
// been set by the Thread executing the user class.
logInfo("Waiting for spark context initialization...")
val totalWaitTime = sparkConf.get(AM_MAX_WAIT_TIME)
try {
val sc = ThreadUtils.awaitResult(sparkContextPromise.future,
Duration(totalWaitTime, TimeUnit.MILLISECONDS))
if (sc != null) {
rpcEnv = sc.env.rpcEnv
val driverRef = runAMEndpoint(
sc.getConf.get("spark.driver.host"),
sc.getConf.get("spark.driver.port"),
isClusterMode = true)
// 注册 ApplicationMaster , 其实就是请求资源
registerAM(sc.getConf, rpcEnv, driverRef, sc.ui.map(_.appUIAddress).getOrElse(""),
securityMgr)
} else {
// Sanity check; should never happen in normal operation, since sc should only be null
// if the user app did not create a SparkContext.
if (!finished) {
throw new IllegalStateException("SparkContext is null but app is still running!")
}
}
// 线程 join: 把 userClassThread 线程执行完毕之后再继续执行当前线程.
userClassThread.join() // yield 礼让
} catch {
}
}
startUserApplication 方法
private def startUserApplication(): Thread = {
// 得到用户类的 main 方法
val mainMethod = userClassLoader.loadClass(args.userClass)
.getMethod("main", classOf[Array[String]])
// 创建及线程
val userThread = new Thread {
override def run() {
try {
// 调用用户类的主函数
mainMethod.invoke(null, userArgs.toArray)
} catch {
...
} finally {
...
}
}
}
userThread.setContextClassLoader(userClassLoader)
userThread.setName("Driver")
userThread.start()
userThread
}
registerAM 方法
private def registerAM(
_sparkConf: SparkConf,
_rpcEnv: RpcEnv,
driverRef: RpcEndpointRef,
uiAddress: String,
securityMgr: SecurityManager) = {
...
// 向 RM 注册, 得到 YarnAllocator
allocator = client.register(driverUrl,
driverRef,
yarnConf,
_sparkConf,
uiAddress,
historyAddress,
securityMgr,
localResources)
// 请求分配资源
allocator.allocateResources()
}
allocator.allocateResources() 方法
/**
请求资源,如果 Yarn 满足了我们的所有要求,我们就会得到一些容器(数量: maxExecutors)。
通过在这些容器中启动 Executor 来处理 YARN 授予我们的任何容器。
必须同步,因为在此方法中读取的变量会被其他方法更改。
*/
def allocateResources(): Unit = synchronized {
...
if (allocatedContainers.size > 0) {
...
handleAllocatedContainers(allocatedContainers.asScala)
}
...
}
handleAllocatedContainers方法
/**
处理 RM 授权给我们的容器
*/
def handleAllocatedContainers(allocatedContainers: Seq[Container]): Unit = {
val containersToUse = new ArrayBuffer[Container](allocatedContainers.size)
runAllocatedContainers(containersToUse)
}
runAllocatedContainers 方法
/**
* Launches executors in the allocated containers.
在已经分配的容器中启动 Executors
*/
private def runAllocatedContainers(containersToUse: ArrayBuffer[Container]): Unit = {
// 每个容器上启动一个 Executor
for (container <- containersToUse) {
if (numExecutorsRunning < targetNumExecutors) {
if (launchContainers) {
launcherPool.execute(new Runnable {
override def run(): Unit = {
try {
new ExecutorRunnable(
Some(container),
conf,
sparkConf,
driverUrl,
executorId,
executorHostname,
executorMemory,
executorCores,
appAttemptId.getApplicationId.toString,
securityMgr,
localResources
).run() // 启动 executor
updateInternalState()
} catch {
...
}
}
})
} else {
...
}
} else {
...
}
}
}
ExecutorRunnable.run方法
def run(): Unit = {
logDebug("Starting Executor Container")
// 创建 NodeManager 客户端
nmClient = NMClient.createNMClient()
// 初始化 NodeManager 客户端
nmClient.init(conf)
// 启动 NodeManager 客户端
nmClient.start()
// 启动容器
startContainer()
}
ExecutorRunnable.startContainer()
def startContainer(): java.util.Map[String, ByteBuffer] = {
val ctx = Records.newRecord(classOf[ContainerLaunchContext])
.asInstanceOf[ContainerLaunchContext]
// 准备要执行的命令
val commands = prepareCommand()
ctx.setCommands(commands.asJava)
// Send the start request to the ContainerManager
try {
// 启动容器
nmClient.startContainer(container.get, ctx)
} catch {
...
}
}
ExecutorRunnable.prepareCommand 方法
private def prepareCommand(): List[String] = {
val commands = prefixEnv ++ Seq(
YarnSparkHadoopUtil.expandEnvironment(Environment.JAVA_HOME) + "/bin/java",
"-server") ++
javaOpts ++
// 要执行的类
Seq("org.apache.spark.executor.CoarseGrainedExecutorBackend",
"--driver-url", masterAddress,
"--executor-id", executorId,
"--hostname", hostname,
"--cores", executorCores.toString,
"--app-id", appId) ++
userClassPath ++
Seq(
s"1>${ApplicationConstants.LOG_DIR_EXPANSION_VAR}/stdout",
s"2>${ApplicationConstants.LOG_DIR_EXPANSION_VAR}/stderr")
commands.map(s => if (s == null) "null" else s).toList
}
ApplicationMaster 进程启动完毕
5org.apache.spark.executor.CoarseGrainedExecutorBackend
CoarseGrainedExecutorBackend 伴生类
main方法
def main(args: Array[String]) {
// 启动 CoarseGrainedExecutorBackend
run(driverUrl, executorId, hostname, cores, appId, workerUrl, userClassPath)
// 运行结束之后退出进程
System.exit(0)
}
run 方法
/**
准备 RpcEnv
*/
private def run(
driverUrl: String,
executorId: String,
hostname: String,
cores: Int,
appId: String,
workerUrl: Option[String],
userClassPath: Seq[URL]) {
SparkHadoopUtil.get.runAsSparkUser { () =>
val env = SparkEnv.createExecutorEnv(
driverConf, executorId, hostname, port, cores, cfg.ioEncryptionKey, isLocal = false)
env.rpcEnv.setupEndpoint("Executor", new CoarseGrainedExecutorBackend(
env.rpcEnv, driverUrl, executorId, hostname, cores, userClassPath, env))
}
}
CoarseGrainedExecutorBackend 伴生类
继承自: ThreadSafeRpcEndpoint 是一个RpcEndpoint
查看声明周期:constructor -> onStart -> receive* -> onStop
/**
* An end point for the RPC that defines what functions to trigger given a message.
*
* It is guaranteed that <code data-enlighter-language="generic" class="EnlighterJSRAW">onStart</code>, <code data-enlighter-language="generic" class="EnlighterJSRAW">receive</code> and <code data-enlighter-language="generic" class="EnlighterJSRAW">onStop</code> will be called in sequence.
*
* The life-cycle of an endpoint is:
*
* constructor -> onStart -> receive* -> onStop
*
* Note: <code data-enlighter-language="generic" class="EnlighterJSRAW">receive</code> can be called concurrently. If you want <code data-enlighter-language="generic" class="EnlighterJSRAW">receive</code> to be thread-safe, please use
* [[ThreadSafeRpcEndpoint]]
*
* If any error is thrown from one of [[RpcEndpoint]] methods except <code data-enlighter-language="generic" class="EnlighterJSRAW">onError</code>, <code data-enlighter-language="generic" class="EnlighterJSRAW">onError</code> will be
* invoked with the cause. If <code data-enlighter-language="generic" class="EnlighterJSRAW">onError</code> throws an error, [[RpcEnv]] will ignore it.
*/
private[spark] trait RpcEndpoint {...}
onStart 方法连接到 Driver, 并向 Driver注册Executor
override def onStart() {
rpcEnv.asyncSetupEndpointRefByURI(driverUrl).flatMap { ref =>
// This is a very fast action so we can use "ThreadUtils.sameThread"
driver = Some(ref)
// 向驱动注册 Executor 关键方法
ref.ask[Boolean](RegisterExecutor(executorId, self, hostname, cores, extractLogUrls))
}(ThreadUtils.sameThread).onComplete {
case Success(msg) =>
case Failure(e) =>
// 注册失败, 退出 executor
exitExecutor(1, s"Cannot register with driver: $driverUrl", e, notifyDriver = false)
}(ThreadUtils.sameThread)
}
Driver端的CoarseGrainedSchedulerBackend.DriverEndPoint 的 receiveAndReply 方法
override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
// 接收注册 Executor
case RegisterExecutor(executorId, executorRef, hostname, cores, logUrls) =>
if (executorDataMap.contains(executorId)) { // 已经注册过了
...
} else {
// 给 Executor 发送注册成功的信息
executorRef.send(RegisteredExecutor)
...
}
}
Eexcutor端的CoarseGrainedExecutorBackend的receive方法
override def receive: PartialFunction[Any, Unit] = {
// 向 Driver 注册成功
case RegisteredExecutor =>
logInfo("Successfully registered with driver")
try {
...
// 创建 Executor 对象 注意: Executor 其实是一个对象
executor = new Executor(executorId, hostname, env, userClassPath, isLocal = false)
} catch {
...
}
}
6总结