给你几何形状的蛋糕,你需要按照顶点来切蛋糕,每次切蛋糕会产生一个贡献,\(val=cost_{i, j} *|x_i + x_j| * |y_i + y_j| % p\) 问你把蛋糕切成几个三角形所需要的最小花费
题解:区间dp好题
首先我们维护 一个凸包,如果这个几何形状只有三个点,那么就不需要切,花费为0
然后维护出一个凸包出来,如果满足凸包的条件的话,我们就开始切三角形
很显然我们需要维护一个花费最小的三角形剖分
设置dp[i][j]为从顶点i到顶点j所围成凸多边形的最优解。
枚举切点k (i < k < j)
\(dp[i][j] = min(dp[i][k] + dp[k][j] + cost[i][k] + cost[k][j])\)
代码:#include <set>
#include <map>
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
typedef unsigned long long uLL;
#define ls rt<<1
#define rs rt<<1|1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define bug printf("*********\n")
#define FIN freopen("input.txt","r",stdin);
#define FON freopen("output.txt","w+",stdout);
#define IO ios::sync_with_stdio(false),cin.tie(0)
#define debug1(x) cout<<"["<<#x<<" "<<(x)<<"]\n"
#define debug2(x,y) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<"]\n"
#define debug3(x,y,z) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<" "<<#z<<" "<<z<<"]\n"
const int maxn = 3e5 + 5;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
LL quick_pow(LL x, LL y) {
LL ans = 1;
while(y) {
if(y & 1) {
ans = ans * x % mod;
} x = x * x % mod;
y >>= 1;
} return ans;
}
struct Point {
int x, y;
Point() {}
Point(int xx, int yy): x(xx), y(yy) {}
void read() {
scanf("%d%d", &x, &y);
}
bool operator < (const Point &other)const {
if(x == other.x)
return y < other.y;
return x < other.x;
}
Point operator - (const Point &other)const {
return Point(x - other.x, y - other.y);
}
};
Point P[400], ch[400];
int n, m;
double Cross(Point A, Point B) {
return A.x * B.y - A.y * B.x;
}
int ConvexHull() {
sort(P, P + n);
int cnt = 0;
for(int i = 0; i < n; i++) {
while(cnt > 1 && Cross(ch[cnt - 1] - ch[cnt - 2], P[i] - ch[cnt - 2]) <= 0) cnt--;
ch[cnt++] = P[i];
}
int k = cnt;
for(int i = n - 2; i >= 0; i--) {
while(cnt > k && Cross(ch[cnt - 1] - ch[cnt - 2], P[i] - ch[cnt - 2]) <= 0) cnt--;
ch[cnt++] = P[i];
}
if(n > 1) cnt--;
return cnt;
}
int calc(Point a, Point b) {
return (abs(a.x + b.x) * abs(a.y + b.y)) % m;
}
int f[505][505];
int dp[505][505];
int main() {
#ifndef ONLINE_JUDGE
FIN
#endif
while(~scanf("%d%d", &n, &m)) {
for(int i = 0; i < n; i++) {
scanf("%d%d", &P[i].x, &P[i].y);
}
if(n == 3) {
puts("0");
continue;
}
if(ConvexHull() < n) {
printf("I can't cut.\n");
} else {
for(int i = 0; i < n; i++) {
for(int j = i + 2; j < n; j++) {
f[i][j] = f[j][i] = calc(ch[i], ch[j]);
}
}
for(int i = 0; i < n; i++) {
for(int j = 0; j < n; j++) {
dp[i][j] = INF;
}
dp[i][(i + 1) % n] = 0;
}
for(int i = n - 3; i >= 0; i--) {
for(int j = i + 2; j < n; j++) {
for(int k = i + 1; k < j; k++) {
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + f[i][k] + f[k][j]);
}
}
}
printf("%d\n", dp[0][n - 1]);
}
}
return 0;
}