上篇博客写了如何利用svm训练自己的模型,用于识别数字,这片博客就是加载模型,然后测试模型到底怎样,正确率高不高。
识别的结果就在这句话中,这句代码的意思是将检测的图片的标签返回回来,结果保存在response中,可以对response进行操作检测自己的模型准确率
int response = (int)svm->predict(p);
#include <stdio.h>
#include <time.h>
#include <math.h>
#include <opencv2/opencv.hpp>
#include <opencv/cv.h>
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/ml/ml.hpp>
#include <io.h>
using namespace std;
using namespace cv;
void getFiles(string path, vector<string>& files);
int main()
{
int result = 0; //
char * filePath = "E:\\SVM_train_data\\positive\\test";
vector<string> files;
getFiles(filePath, files);
int number = files.size();
cout <<"共有测试图片 " <<number <<" 张\n"<< endl;
Ptr<ml::SVM>svm = ml::SVM::load("svm.xml");
for (int i = 0; i < number; i++)
{
Mat inMat = imread(files[i].c_str());
Mat p = inMat.reshape(1, 1);
p.convertTo(p, CV_32FC1);
int response = (int)svm->predict(p);
cout << "识别的数字为:" << response << endl;
if (response > =1)
{
result++;
}
}
cout << result << endl;
getchar();
return 0;
}
void getFiles(string path, vector<string>& files)
{
intptr_t hFile = 0;
struct _finddata_t fileinfo;
string p;
if ((hFile = _findfirst(p.assign(path).append("\\*").c_str(), &fileinfo)) != -1)
{
do
{
if ((fileinfo.attrib & _A_SUBDIR))
{
if (strcmp(fileinfo.name, ".") != 0 && strcmp(fileinfo.name, "..") != 0)
getFiles(p.assign(path).append("\\").append(fileinfo.name), files);
}
else
{
files.push_back(p.assign(path).append("\\").append(fileinfo.name));
}
} while (_findnext(hFile, &fileinfo) == 0);
_findclose(hFile);
}
}
检测效果,蛮好的