准备工作

1.安装kafka+zookeeper环境 

2.利用命令创建好topic,创建一个topic my-topic

集成步骤

1.配置生产者

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xsi:schemaLocation="
        http://www.springframework.org/schema/beans
        http://www.springframework.org/schema/beans/spring-beans.xsd">

    <!-- 定义producer的参数 -->
    <bean  >
        <constructor-arg>
            <map>
                <!-- 配置kafka的broke -->
                <entry key="bootstrap.servers" value="192.168.1.88:9001,192.168.1.88:9002"/>
                <!-- 配置组-->
                <entry key="group.id" value="group1"/>
                <entry key="acks" value="all"/>
                <entry key="retries" value="10"/>
                <entry key="batch.size" value="16384"/>
                <entry key="linger.ms" value="1"/>
                <entry key="buffer.memory" value="33554432"/>
                <entry key="key.serializer" value="org.apache.kafka.common.serialization.StringSerializer"/>
                <entry key="value.serializer" value="com.redxun.jms.ObjectSerializer"/>
            </map>
        </constructor-arg>
    </bean>

    <!-- 创建kafkatemplate需要使用的producerfactory bean -->
    <bean  >
        <constructor-arg>
            <ref bean="producerProperties"/>
        </constructor-arg>
    </bean>

    <!-- 创建kafkatemplate bean,使用的时候,只需要注入这个bean,即可使用template的send消息方法 -->
    <bean  >
        <constructor-arg ref="producerFactory"/>
        <constructor-arg name="autoFlush" value="true"/>
        <property name="defaultTopic" value="my-topic"/>
    </bean>

</beans>

2.配置消费者

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:int="http://www.springframework.org/schema/integration"
       xmlns:int-kafka="http://www.springframework.org/schema/integration/kafka"
       xmlns:task="http://www.springframework.org/schema/task"
       xsi:schemaLocation="http://www.springframework.org/schema/integration/kafka http://www.springframework.org/schema/integration/kafka/spring-integration-kafka.xsd
        http://www.springframework.org/schema/integration http://www.springframework.org/schema/integration/spring-integration.xsd
        http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
        http://www.springframework.org/schema/task http://www.springframework.org/schema/task/spring-task.xsd">

    <!-- 定义consumer的参数 -->
    <bean  >
        <constructor-arg>
            <map>
                <!-- 配置kafka的broke -->
                <entry key="bootstrap.servers" value="192.168.1.88:9001,192.168.1.88:9002"/>
                <!-- 配置组-->
                <entry key="group.id" value="group1"/>
                <entry key="enable.auto.commit" value="true"/>
                <entry key="auto.commit.interval.ms" value="1000"/>
                <entry key="session.timeout.ms" value="30000"/>
                <entry key="key.deserializer" value="org.apache.kafka.common.serialization.StringDeserializer"/>
                <entry key="value.deserializer" value="com.redxun.jms.ObjectDeSerializer"/>
            </map>
        </constructor-arg>
    </bean>

    <!-- 创建consumerFactory bean -->
    <bean  >
        <constructor-arg>
            <ref bean="consumerProperties"/>
        </constructor-arg>
    </bean>

    <!-- 实际执行消息消费的类 -->
    <bean  />

    <!-- 消费者容器配置信息 -->
    <bean  >
        <!-- 重要!配置topic -->
        <constructor-arg value="my-topic"/>
        <property name="messageListener" ref="messageListernerConsumerService"/>
    </bean>

    <!-- 创建kafkatemplate bean,使用的时候,只需要注入这个bean,即可使用template的send消息方法 -->
    <bean   init-method="doStart">
        <constructor-arg ref="consumerFactory"/>
        <constructor-arg ref="containerProperties"/>
    </bean>


</beans>

3.消息序列化和反序列化

在发送消息时,我们可以发送对象,而不只是字符串,所以我们需要将发送的数据进行序列化和反序列化,上面的配置文件有配置序列化和反序列化。

序列化代码

package com.redxun.jms;

import java.util.Map;

import org.apache.kafka.common.serialization.Serializer;

import com.redxun.core.util.FileUtil;

public class ObjectSerializer implements Serializer<Object> {

    @Override
    public void configure(Map<String, ?> configs, boolean isKey) {

    }

    @Override
    public byte[] serialize(String topic, Object data) {
        try {
            return FileUtil.objToBytes(data);
        } catch (Exception e) {
            return null;
        }
    }

    @Override
    public void close() {

    }

}

反序列化

package com.redxun.jms;

import java.util.Map;

import org.apache.kafka.common.serialization.Deserializer;

import com.redxun.core.util.FileUtil;

public class ObjectDeSerializer implements Deserializer<Object> {

    @Override
    public void configure(Map<String, ?> configs, boolean isKey) {

    }

    @Override
    public Object deserialize(String topic, byte[] data) {
        try {
            return FileUtil.bytesToObject(data);
        } catch (Exception e) {
            e.printStackTrace();
            return null;
        }
    }

    @Override
    public void close() {
        // TODO Auto-generated method stub

    }

}

4.发送消息代码

OsUser user=new OsUser();
user.setUserId("00001");
user.setFullname("zyg");
kafkaTemplate.sendDefault("demo", user);

5.接收消息代码

package com.redxun.jms;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.kafka.listener.MessageListener;

import com.redxun.sys.org.entity.OsUser;

public class KafkaConsumerListener implements MessageListener<String, Object> {

    @Override
    public void onMessage(ConsumerRecord<String, Object> record) {
        if(record.value() instanceof OsUser ){
            OsUser user=(OsUser) record.value();
            System.out.println(user.getFullname());
        }
      
    }

}

 6.注意事项

在配置 kafka 配置文件

需要配置 

host.name=ip地址

port=端口

SPRING 集成 KAFKA 发送消息_spring kafka