1.安装kafka+zookeeper环境
2.利用命令创建好topic,创建一个topic my-topic
集成步骤1.配置生产者
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd"> <!-- 定义producer的参数 --> <bean > <constructor-arg> <map> <!-- 配置kafka的broke --> <entry key="bootstrap.servers" value="192.168.1.88:9001,192.168.1.88:9002"/> <!-- 配置组--> <entry key="group.id" value="group1"/> <entry key="acks" value="all"/> <entry key="retries" value="10"/> <entry key="batch.size" value="16384"/> <entry key="linger.ms" value="1"/> <entry key="buffer.memory" value="33554432"/> <entry key="key.serializer" value="org.apache.kafka.common.serialization.StringSerializer"/> <entry key="value.serializer" value="com.redxun.jms.ObjectSerializer"/> </map> </constructor-arg> </bean> <!-- 创建kafkatemplate需要使用的producerfactory bean --> <bean > <constructor-arg> <ref bean="producerProperties"/> </constructor-arg> </bean> <!-- 创建kafkatemplate bean,使用的时候,只需要注入这个bean,即可使用template的send消息方法 --> <bean > <constructor-arg ref="producerFactory"/> <constructor-arg name="autoFlush" value="true"/> <property name="defaultTopic" value="my-topic"/> </bean> </beans>
2.配置消费者
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:int="http://www.springframework.org/schema/integration" xmlns:int-kafka="http://www.springframework.org/schema/integration/kafka" xmlns:task="http://www.springframework.org/schema/task" xsi:schemaLocation="http://www.springframework.org/schema/integration/kafka http://www.springframework.org/schema/integration/kafka/spring-integration-kafka.xsd http://www.springframework.org/schema/integration http://www.springframework.org/schema/integration/spring-integration.xsd http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/task http://www.springframework.org/schema/task/spring-task.xsd"> <!-- 定义consumer的参数 --> <bean > <constructor-arg> <map> <!-- 配置kafka的broke --> <entry key="bootstrap.servers" value="192.168.1.88:9001,192.168.1.88:9002"/> <!-- 配置组--> <entry key="group.id" value="group1"/> <entry key="enable.auto.commit" value="true"/> <entry key="auto.commit.interval.ms" value="1000"/> <entry key="session.timeout.ms" value="30000"/> <entry key="key.deserializer" value="org.apache.kafka.common.serialization.StringDeserializer"/> <entry key="value.deserializer" value="com.redxun.jms.ObjectDeSerializer"/> </map> </constructor-arg> </bean> <!-- 创建consumerFactory bean --> <bean > <constructor-arg> <ref bean="consumerProperties"/> </constructor-arg> </bean> <!-- 实际执行消息消费的类 --> <bean /> <!-- 消费者容器配置信息 --> <bean > <!-- 重要!配置topic --> <constructor-arg value="my-topic"/> <property name="messageListener" ref="messageListernerConsumerService"/> </bean> <!-- 创建kafkatemplate bean,使用的时候,只需要注入这个bean,即可使用template的send消息方法 --> <bean init-method="doStart"> <constructor-arg ref="consumerFactory"/> <constructor-arg ref="containerProperties"/> </bean> </beans>
3.消息序列化和反序列化
在发送消息时,我们可以发送对象,而不只是字符串,所以我们需要将发送的数据进行序列化和反序列化,上面的配置文件有配置序列化和反序列化。
序列化代码
package com.redxun.jms; import java.util.Map; import org.apache.kafka.common.serialization.Serializer; import com.redxun.core.util.FileUtil; public class ObjectSerializer implements Serializer<Object> { @Override public void configure(Map<String, ?> configs, boolean isKey) { } @Override public byte[] serialize(String topic, Object data) { try { return FileUtil.objToBytes(data); } catch (Exception e) { return null; } } @Override public void close() { } }
反序列化
package com.redxun.jms; import java.util.Map; import org.apache.kafka.common.serialization.Deserializer; import com.redxun.core.util.FileUtil; public class ObjectDeSerializer implements Deserializer<Object> { @Override public void configure(Map<String, ?> configs, boolean isKey) { } @Override public Object deserialize(String topic, byte[] data) { try { return FileUtil.bytesToObject(data); } catch (Exception e) { e.printStackTrace(); return null; } } @Override public void close() { // TODO Auto-generated method stub } }
4.发送消息代码
OsUser user=new OsUser(); user.setUserId("00001"); user.setFullname("zyg"); kafkaTemplate.sendDefault("demo", user);
5.接收消息代码
package com.redxun.jms; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.springframework.kafka.listener.MessageListener; import com.redxun.sys.org.entity.OsUser; public class KafkaConsumerListener implements MessageListener<String, Object> { @Override public void onMessage(ConsumerRecord<String, Object> record) { if(record.value() instanceof OsUser ){ OsUser user=(OsUser) record.value(); System.out.println(user.getFullname()); } } }
6.注意事项
在配置 kafka 配置文件
需要配置
host.name=ip地址
port=端口