机器学习和人工智能,深度学习的关系
-
机器学习是人工智能的一个实现途径
-
深度学习是机器学习的一个方法发展而来
机器学习是从数据中自动分析获得模型,并利用模型对未知数据进行预测。
机器学习算法分类
监督学习(supervised learning)(预测)
- 定义:输入数据是由输入特征值和目标值所组成。函数的输出可以是一个连续的值(称为回归),或是输出是有限个离散值(称作分类)。
- 分类 k-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归、神经网络
- 回归 线性回归、岭回归
无监督学习(unsupervised learning)
- 定义:输入数据是由输入特征值所组成。
- 聚类 k-means
机器学习开发流程
特征抽取字典特征提取
作用:对字典数据进行特征值化
- sklearn.feature_extraction.DictVectorizer(sparse=True,…)
- DictVectorizer.fit_transform(X) X:字典或者包含字典的迭代器返回值:返回sparse矩阵
- DictVectorizer.inverse_transform(X) X:array数组或者sparse矩阵 返回值:转换之前数据格式
- DictVectorizer.get_feature_names() 返回类别名称
代码
def dict_demo(): """ 字典特征抽取 :return: """ data = [{'city': '北京','temperature':100}, {'city': '上海','temperature':60}, {'city': '深圳','temperature':30}] # 1、实例化一个转换器类 transfer = DictVectorizer(sparse=True) # 2、调用fit_transform() data_new = transfer.fit_transform(data) print("data_new:\n", data_new.toarray(), type(data_new)) print("特征名字:\n", transfer.get_feature_names()) return None
文本特征提取(英文)
作用:对文本数据进行特征值化
-
sklearn.feature_extraction.text.CountVectorizer(stop_words=[])
- 返回词频矩阵
- CountVectorizer.fit_transform(X) X:文本或者包含文本字符串的可迭代对象 返回值:返回sparse矩阵
- CountVectorizer.inverse_transform(X) X:array数组或者sparse矩阵 返回值:转换之前数据格
- CountVectorizer.get_feature_names() 返回值:单词列表
- sklearn.feature_extraction.text.TfidfVectorizer
代码
def count_demo(): """ 文本特征抽取:CountVecotrizer :return: """ data = ["life is short,i like like python", "life is too long,i dislike python"] # 1、实例化一个转换器类 transfer = CountVectorizer(stop_words=["is", "too"]) # 2、调用fit_transform data_new = transfer.fit_transform(data) print("data_new:\n", data_new.toarray()) print("特征名字:\n", transfer.get_feature_names()) return None
文本特征提取(中文)
jieba分词处理
jieba.cut()
- 返回词语组成的生成器
代码
def cut_word(text): """ 进行中文分词:"我爱北京天安门" --> "我 爱 北京 天安门" :param text: :return: """ return " ".join(list(jieba.cut(text))) def count_chinese_demo2(): """ 中文文本特征抽取,自动分词 :return: """ # 将中文文本进行分词 data = ["一种还是一种今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。", "我们看到的从很远星系来的光是在几百万年之前发出的,这样当我们看到宇宙时,我们是在看它的过去。", "如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。"] data_new = [] for sent in data: data_new.append(cut_word(sent)) # print(data_new) # 1、实例化一个转换器类 transfer = CountVectorizer(stop_words=["一种", "所以"]) # 2、调用fit_transform data_final = transfer.fit_transform(data_new) print("data_new:\n", data_final.toarray()) print("特征名字:\n", transfer.get_feature_names()) return None
Tf-idf文本特征提取
- TF-IDF的主要思想是:如果某个词或短语在一篇文章中出现的概率高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。
- TF-IDF作用:用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。
公式:
- 词频(term frequency,tf)指的是某一个给定的词语在该文件中出现的频率
- 逆向文档频率(inverse document frequency,idf)是一个词语普遍重要性的度量。某一特定词语的idf,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取以10为底的对数得到
代码
def tfidf_demo(): """ 用TF-IDF的方法进行文本特征抽取 :return: """ # 将中文文本进行分词 data = ["一种还是一种今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。", "我们看到的从很远星系来的光是在几百万年之前发出的,这样当我们看到宇宙时,我们是在看它的过去。", "如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。"] data_new = [] for sent in data: data_new.append(cut_word(sent)) # print(data_new) # 1、实例化一个转换器类 transfer = TfidfVectorizer(stop_words=["一种", "所以"]) # 2、调用fit_transform data_final = transfer.fit_transform(data_new) print("data_new:\n", data_final.toarray()) print("特征名字:\n", transfer.get_feature_names()) return None
通过一些转换函数将特征数据转换成更加适合算法模型的特征数据过程
内容
数值型数据的无量纲化:
- 归一化
- 标准化
为什么进行归一化/标准化?
- 特征的单位或者大小相差较大,或者某特征的方差相比其他的特征要大出几个数量级,容易影响(支配)目标结果,使得一些算法无法学习到其它的特征
归一化
定义
通过对原始数据进行变换把数据映射到(默认为[0,1])之间
公式
API
sklearn.preprocessing.MinMaxScaler (feature_range=(0,1)… )
- MinMaxScalar.fit_transform(X)
- X:numpy array格式的数据[n_samples,n_features]
- 返回值:转换后的形状相同的array
代码
def minmax_demo(): """ 归一化 :return: """ # 1、获取数据 data = pd.read_csv("dating.txt") data = data.iloc[:, :3] print("data:\n", data) # 2、实例化一个转换器类 transfer = MinMaxScaler(feature_range=[0, 1]) # 3、调用fit_transform data_new = transfer.fit_transform(data) print("data_new:\n", data_new) return None
总结
最大值与最小值非常容易受异常点影响,所以这种方法鲁棒性较差,只适合传统精确小数据场景。
标准化
定义
通过对原始数据进行变换把数据变换到均值为0,标准差为1范围内
公式
API
- sklearn.preprocessing.StandardScaler( )
- 处理之后每列来说所有数据都聚集在均值0附近标准差差为1
- StandardScaler.fit_transform(X)
- X:numpy array格式的数据[n_samples,n_features]
- 返回值:转换后的形状相同的array
代码
def stand_demo(): """ 标准化 :return: """ # 1、获取数据 data = pd.read_csv("dating.txt") data = data.iloc[:, :3] print("data:\n", data) # 2、实例化一个转换器类 transfer = StandardScaler() # 3、调用fit_transform data_new = transfer.fit_transform(data) print("data_new:\n", data_new) return None
降维是指在某些限定条件下,降低随机变量(特征)个数,得到一组“不相关”主变量的过程
降维方法1:特征选择
定义
数据中包含冗余或无关变量(或称特征、属性、指标等),旨在从原有特征中找出主要特征。
方法
- Filter(过滤式):主要探究特征本身特点、特征与特征和目标值之间关联
- 方差选择法:低方差特征过滤
- 相关系数
- Embedded (嵌入式):算法自动选择特征(特征与目标值之间的关联)
- 决策树:信息熵、信息增益
- 正则化:L1、L2
- 深度学习:卷积等
过滤式
低方差特征过滤
sklearn.feature_selection.VarianceThreshold(threshold = 0.0)
- 删除所有低方差特征
- Variance.fit_transform(X)
- X:numpy array格式的数据[n_samples,n_features]
- 返回值:训练集差异低于threshold的特征将被删除。默认值是保留所有非零方差特征,即删除所有样本中具有相同值的特征。
代码
def variance_demo(): """ 过滤低方差特征 :return: """ # 1、获取数据 data = pd.read_csv("factor_returns.csv") data = data.iloc[:, 1:-2] print("data:\n", data) # 2、实例化一个转换器类 transfer = VarianceThreshold(threshold=10) # 3、调用fit_transform data_new = transfer.fit_transform(data) print("data_new:\n", data_new, data_new.shape) # 计算某两个变量之间的相关系数 r1 = pearsonr(data["pe_ratio"], data["pb_ratio"]) print("相关系数:\n", r1) r2 = pearsonr(data['revenue'], data['total_expense']) print("revenue与total_expense之间的相关性:\n", r2) return None
降维方法2:主成分分析
-
定义:高维数据转化为低维数据的过程,在此过程中可能会舍弃原有数据、创造新的变量
-
作用:是数据维数压缩,尽可能降低原数据的维数(复杂度),损失少量信息。
- 应用:回归分析或者聚类分析当中
API
- sklearn.decomposition.PCA(n_components=None)
- 将数据分解为较低维数空间
- n_components:
- 小数:表示保留百分之多少的信息
- 整数:减少到多少特征
- PCA.fit_transform(X) X:numpy array格式的数据[n_samples,n_features]
- 返回值:转换后指定维度的array
代码
def pca_demo(): """ PCA降维 :return: """ data = [[2,8,4,5], [6,3,0,8], [5,4,9,1]] # 1、实例化一个转换器类 transfer = PCA(n_components=0.95) # 2、调用fit_transform data_new = transfer.fit_transform(data) print("data_new:\n", data_new) return None