package com.atguigu.floyd;
import java.util.Arrays;
public class FloydAlgorithm {
public static void main(String[] args) {
//测试看看图是否创建成功
char[] vertex={'A','B','C','D','E','F','G'};
//创建邻接矩阵
int[][] matrix=new int[vertex.length][vertex.length];
final int N=65535;
matrix[0] = new int[] { 0, 5, 7, N, N, N, 2 };
matrix[1] = new int[] { 5, 0, N, 9, N, N, 3 };
matrix[2] = new int[] { 7, N, 0, N, 8, N, N };
matrix[3] = new int[] { N, 9, N, 0, N, 4, N };
matrix[4] = new int[] { N, N, 8, N, 0, 5, 4 };
matrix[5] = new int[] { N, N, N, 4, 5, 0, 6 };
matrix[6] = new int[] { 2, 3, N, N, 4, 6, 0 };
//创建Graph对象
Graph graph = new Graph(vertex.length, matrix, vertex);
//调用弗洛伊德算法
graph.floyd();
graph.show();
}
}
//创建图
class Graph{
private char[] vertex;//存放顶点的数组
private int[][] dis;//保存,从各个顶点出发到其他顶点的距离,最后的结果,也是保留在该数组
private int[][] pre;//保存到达目标顶点的前驱顶点
//构造器
/**
*
* @param length 大小
* @param matrix 邻接矩阵
* @param vertex 顶点数组
*/
public Graph(int length,int[][] matrix,char[] vertex){
this.vertex=vertex;
this.dis=matrix;
this.pre=new int[length][length];
//对pre数组初始化,注意存放的是前驱顶点的下标
for (int i = 0; i < length; i++) {
Arrays.fill(pre[i],i);
}
}
//显示pre数组和dis数组
public void show(){
//为了显示便于阅读,我们优化一下输出
char[] vertex={'A','B','C','D','E','F','G'};
for (int k = 0; k < dis.length; k++) {
//先将pre数组输出的一行
for (int i = 0; i < dis.length; i++) {
System.out.print(pre[k][i]+" ");
}
System.out.println();
//将dis数组输出的一行
for (int i = 0; i < dis.length; i++) {
System.out.print(vertex[k]+"到"+vertex[i]+"的最短路径是"+dis[k][i]+" ");
}
System.out.println();
System.out.println();
}
}
//佛罗伊德算法,比较容易理解,而且容易实现
public void floyd(){
int len=0;//变量保存距离
//对中间顶点的遍历,k就是中间顶点的下标
for (int k = 0; k < dis.length; k++) {//[A, B, C, D, E, F, G]
//从i顶点开始出发[A, B, C, D, E, F, G]
for (int i = 0; i < dis.length; i++) {
//到达j顶点[A, B, C, D, E, F, G]
for (int j = 0; j < dis.length; j++) {
len=dis[i][k]+dis[k][j];//求出从i顶点出发,经过k中间顶点,到达j顶点距离
if(len<dis[i][j]){
//如果len小于dis[i][j]
dis[i][j]=len;//更新距离
pre[i][j]=pre[k][j];//更新前驱顶点
}
}
}
}
}
}